A. | -2 | B. | 2 | C. | 1 | D. | 0 |
分析 先畫出約束條件的可行域,利用目標函數(shù)的幾何意義,分析后易得目標函數(shù)z=x+2y的最大值.
解答 解:由約束條件變量x,y滿足$\left\{\begin{array}{l}{x+y≤1}\\{x-y≤1}\\{x≥0}\end{array}\right.$,得如圖所示的三角形區(qū)域,由$\left\{\begin{array}{l}{x+y=1}\\{x=0}\end{array}\right.$可得頂點A(0,1),令z=x+2y,平移直線z=x+2y,
直線z=x+2y過點 A(0,1)時,z取得最大值為2;
故選:B.
點評 在解決線性規(guī)劃的小題時,我們常用“角點法”,其步驟為:①由約束條件畫出可行域⇒②求出可行域各個角點的坐標⇒③將坐標逐一代入目標函數(shù)⇒④驗證,求出最優(yōu)解.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | c-b>0 | B. | c-a>0 | C. | (c-b)(c-a)>0 | D. | (c-b)(c-a)<0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{\sqrt{3}}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-2,-1] | B. | [-1,2] | C. | [-1,1) | D. | [1,2] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com