設L為曲線C:y=在點(1,0)處的切線.

(1)求L的方程;

(2)證明:除切點(1,0)之外,曲線C在直線L的下方.

 

(1)y=x-1

(2)見解析

【解析】(1)設f(x)=,則f′(x)=

所以f′(1)=1,所以L的方程為y=x-1.

(2)證明:令g(x)=x-1-f(x),則除切點之外,曲線C在直線L的下方等價于g(x)>0(?x>0,x≠1).

g(x)滿足g(1)=0,且

g′(x)=1-f′(x)=.

當0<x<1時,x2-1<0,ln x<0,所以g′(x)<0,故g(x)單調(diào)遞減;

當x>1時,x2-1>0,ln x>0,所以g′(x)>0,故g(x)單調(diào)遞增.

所以,g(x)>g(1)=0(?x>0,x≠1).

所以除切點之外,曲線C在直線L的下方.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第二章 函數(shù)、導數(shù)及其應用(解析版) 題型:選擇題

(2014·廈門模擬)函數(shù)y=esinx(-π≤x≤π)的大致圖象為(  )

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第三章 三角函數(shù)、解三角形(解析版) 題型:選擇題

(2014·宜昌模擬)在△ABC中,若=,則B的值為(  )

A.30° B.45° C.60° D.90°

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第七章 立體幾何(解析版) 題型:選擇題

已知圓錐的底面半徑為R,高為3R,在它的所有內(nèi)接圓柱中,全面積的最大值是( )

A.22πR2 B.πR2 C.πR2 D.πR2

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第七章 立體幾何(解析版) 題型:選擇題

用與球心距離為1的平面去截球,所得的截面面積為π,則球的體積為( )

A. B. C.8π D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 集合、常用邏輯用語、不等式、函數(shù)與導數(shù)(解析版) 題型:填空題

已知y=f(x)+x2是奇函數(shù),且f(1)=1,若g(x)=f(x)+2,則g(-1)=________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 集合、常用邏輯用語、不等式、函數(shù)與導數(shù)(解析版) 題型:選擇題

設f(x)=,則不等式f(x)<2的解集為( )

A.(,+∞) B.(-∞,1)∪[2,)

C.(1,2]∪(,+∞) D.(1,)

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 解析幾何(解析版) 題型:選擇題

雙曲線(m>0,n>0)的離心率為2,有一個焦點與拋物線y2=4mx的焦點重合,則n的值為(  )

A.1    B.4    C.8    D.12

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 概率與統(tǒng)計(解析版) 題型:選擇題

體育課的排球發(fā)球項目考試的規(guī)則是:每位學生最多可發(fā)球3次,一旦發(fā)球成功,則停止發(fā)球,否則一直發(fā)到3次為止.設某學生一次發(fā)球成功的概率為p(p≠0),發(fā)球次數(shù)為X,若X的數(shù)學期望E(X)>1.75,則p的取值范圍是( )

A. B. C. D.

 

查看答案和解析>>

同步練習冊答案