【題目】發(fā)展“會員”、提供優(yōu)惠,成為不少實體店在網(wǎng)購沖擊下吸引客流的重要方式.某連鎖店為了吸引會員,在2019年春節(jié)期間推出一系列優(yōu)惠促銷活動.抽獎返現(xiàn)便是針對“白金卡會員”、“金卡會員”、“銀卡會員”、“基本會員”不同級別的會員享受不同的優(yōu)惠的一項活動:“白金卡會員”、“金卡會員”、“銀卡會員”、“基本會員”分別有4次、3次、2次、1次抽獎機會.抽獎機如圖:抽獎者第一次按下抽獎鍵,在正四面體的頂點出現(xiàn)一個小球,再次按下抽獎鍵,小球以相等的可能移向鄰近的頂點之一,再次按下抽獎鍵,小球又以相等的可能移向鄰近的頂點之一……每一個頂點上均有一個發(fā)光器,小球在某點時,該點等可能發(fā)紅光或藍光,若出現(xiàn)紅光則獲得2個單位現(xiàn)金,若出現(xiàn)藍光則獲得3個單位現(xiàn)金.

1)求“銀卡會員”獲得獎金的分布列;

2表示第次按下抽獎鍵,小球出現(xiàn)在點處的概率.

,的值;

寫出關(guān)系式,并說明理由.

【答案】1)詳見解析;(2)①,,,;②,理由詳見解析.

【解析】

1)設(shè)“銀卡會員”獲得獎金為個單位現(xiàn)金,得出的取值以及相應的概率,最后列出分布列;

2)①第一次按下抽獎鍵小球一定出現(xiàn)在正四面體的頂點,得出,第二次按下時,小球移向其它相鄰點,則,第三次按下時,由于小球不在點,則,第四次按下時,可分兩種情況進行討論,得出;

②分兩種情況進行討論,第一種:第次按下抽獎鍵小球出現(xiàn)在點處,第二種:第按下抽獎鍵小球不在點處,根據(jù)獨立事件的性質(zhì),即可得出關(guān)系式.

1)設(shè)“銀卡會員”獲得獎金為個單位現(xiàn)金,則可取45,6

;;

的分布列:

4

5

6

2)①第一次按下抽獎鍵小球一定出現(xiàn)在正四面體的頂點,得出

第二次按下時,小球移向其它相鄰點,則

第三次按下時,由于小球不在點,則

第四次按下抽獎鍵時

若第三次結(jié)束小球在點,則第四次按下抽獎鍵時小球出現(xiàn)在點的概率為0

若第三次結(jié)束小球不在點,則第四次按下抽獎鍵時小球出現(xiàn)在點的概率為

②由題意知:若第次按下抽獎鍵小球出現(xiàn)在點處,則第次小球出現(xiàn)在點處的概率為0

若第按下抽獎鍵小球不在點處,則第次小球出現(xiàn)在點處的概率為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)),已知有且僅有3個零點,下列結(jié)論正確的是(

A.上存在,,滿足

B.有且僅有1個最小值點

C.單調(diào)遞增

D.的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學的學生積極參加體育鍛煉,其中有96%的學生喜歡足球或游泳,60%的學生喜歡足球,82%的學生喜歡游泳,則該中學既喜歡足球又喜歡游泳的學生數(shù)占該校學生總數(shù)的比例是(

A.62%B.56%

C.46%D.42%

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為加強對銷售員的考核與管理,從銷售部門隨機抽取了2019年度某一銷售小組的月均銷售額,該小組各組員2019年度的月均銷售額(單位:萬元)分別為:3.35,3.35,3.383.41,3.433.44,3.463.48,3.51,3.543.56,3.56,3.57,3.59,3.60,3.643.64,3.673.70,3.70.

(Ⅰ)根據(jù)公司人力資源部門的要求,若月均銷售額超過3.52萬元的組員不低于全組人數(shù)的,則對該銷售小組給予獎勵,否則不予獎勵.試判斷該公司是否需要對抽取的銷售小組發(fā)放獎勵;

(Ⅱ)從該銷售小組月均銷售額超過3.60萬元的銷售員中隨機抽取2名組員,求選取的2名組員中至少有1名月均銷售額超過3.68萬元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司采購了一批零件,為了檢測這批零件是否合格,從中隨機抽測120個零件的長度(單位:分米),按數(shù)據(jù)分成,,,6組,得到如圖所示的頻率分布直方圖,其中長度大于或等于1.59分米的零件有20個,其長度分別為1.59,1.591.61,1.61,1.621.63,1.63,1.64,1.651.65,1.65,1.651.66,1.67,1.681.69,1.691.71,1.721.74,以這120個零件在各組的長度的頻率估計整批零件在各組長度的概率.

1)求這批零件的長度大于1.60分米的頻率,并求頻率分布直方圖中,,的值;

2)若從這批零件中隨機選取3個,記為抽取的零件長度在的個數(shù),求的分布列和數(shù)學期望;

3)若變量滿足,則稱變量滿足近似于正態(tài)分布的概率分布.如果這批零件的長度(單位:分米)滿足近似于正態(tài)分布的概率分布,則認為這批零件是合格的將順利被簽收;否則,公司將拒絕簽收.試問,該批零件能否被簽收?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年春節(jié)期間,某超市準備舉辦一次有獎促銷活動,若顧客一次消費達到400元則可參加一次抽獎活動,超市設(shè)計了兩種抽獎方案.

方案一:一個不透明的盒子中裝有30個質(zhì)地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機抽取一個球,若抽到紅球則顧客獲得60元的返金券,若抽到白球則獲得20元的返金券,且顧客有放回地抽取3次.

方案二:一個不透明的盒子中裝有30個質(zhì)地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機抽取一個球,若抽到紅球則顧客獲得80元的返金券,若抽到白球則未中獎,且顧客有放回地抽取3次.

(1)現(xiàn)有兩位顧客均獲得抽獎機會,且都按方案一抽獎,試求這兩位顧客均獲得180元返金券的概率;

(2)若某顧客獲得抽獎機會.

①試分別計算他選擇兩種抽獎方案最終獲得返金券的數(shù)學期望;

②為了吸引顧客消費,讓顧客獲得更多金額的返金券,該超市應選擇哪一種抽獎方案進行促銷活動?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地準備在山谷中建一座橋梁,橋址位置的豎直截面圖如圖所示:谷底O在水平線MN上,橋ABMN平行,為鉛垂線(AB).經(jīng)測量,左側(cè)曲線AO上任一點DMN的距離()D的距離a()之間滿足關(guān)系式;右側(cè)曲線BO上任一點FMN的距離()F的距離b()之間滿足關(guān)系式.已知點B的距離為40.

1)求橋AB的長度;

2)計劃在谷底兩側(cè)建造平行于的橋墩CDEF,且CE80米,其中C,EAB(不包括端點).橋墩EF每米造價k(萬元)、橋墩CD每米造價(萬元)(k>0).為多少米時,橋墩CDEF的總造價最低?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系內(nèi),點AB的坐標分別為,P是坐標平面內(nèi)的動點,且直線,的斜率之積等于.設(shè)點P的軌跡為C.

1)求軌跡C的方程;

2)某同學對軌跡C的性質(zhì)進行探究后發(fā)現(xiàn):若過點且傾斜角不為0的直線與軌跡C相交于M,N兩點,則直線,的交點Q在一條定直線上.此結(jié)論是否正確?若正確,請給予證明,并求出定直線方程;若不正確,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中;

l)判斷函數(shù)是否存在極值,若存在,請判斷是極大值還是極小值;若不存在,說明理由;

2)討論在上函數(shù)的零點個數(shù).

查看答案和解析>>

同步練習冊答案