【題目】如圖,已知平面平面,為線段的中點, ,四邊形為邊長為1的正方形,平面平面,,,為棱的中點.
(1)若為線上的點,且直線平面,試確定點的位置;
(2)求平面與平面所成的銳二面角的余弦值.
【答案】(1)見解析;(2)
【解析】
(1)連接,由直線平面,,又為的中點, 從而得為的中位線, 為的中點;(2)先證明平面,
可得兩兩相垂直,以為坐標(biāo)原點,分別以所在直線為軸,軸,軸建立空間直角坐標(biāo)系,平面的一個法向量,利用向量垂直數(shù)量積為零列方程求出平面的一個法向量,由空間向量夾角余弦公式可得結(jié)果.
(1)連接,直線平面,平面,
平面平面,
又為的中點, 為的中位線, 為的中點.
(2) 則,
又為的中點,.
又平面平面,平面平面
四邊形為平行四邊形.
又,四邊形為菱形.
又,,
,
,平面平面
平面,
兩兩相垂直
以為坐標(biāo)原點,分別以所在直線為軸,軸,
軸建立空間直角坐標(biāo)系依題意,得,
,.
設(shè)平面的一個法向量
則由且得:
且
令,得
.
又平面的一個法向量
所求銳二面角的余弦值約:
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是偶函數(shù).
(1)求的值;
(2)若函數(shù)的圖像與的圖像有交點,求的取值范圍;
(3)若函數(shù),是否存在實數(shù)使得最小值為1,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,,是橢圓上在第二象限內(nèi)的一點,且直線的斜率為.
(1)求點的坐標(biāo);
(2)過點作一條斜率為正數(shù)的直線與橢圓從左向右依次交于兩點,是否存在實數(shù)使得?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中不正確的是( )
A.順序結(jié)構(gòu)是由若干個依次執(zhí)行的步驟組成的,每一個算法都離不開順序結(jié)構(gòu)
B.循環(huán)結(jié)構(gòu)是在一些算法中從某處開始,按照一定的條件,反復(fù)執(zhí)行某些步驟,所以循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu)
C.循環(huán)結(jié)構(gòu)中不一定包含條件結(jié)構(gòu)
D.用程序框圖表示算法,使之更加直觀形象,容易理解
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人用農(nóng)藥治蟲,由于計算錯誤,在A,B兩個噴霧器中分別配制成12%和6%的藥水各10千克,實際要求兩個噴霧器中的農(nóng)藥的濃度是一樣的,現(xiàn)在只有兩個能容納1千克藥水的藥瓶,他們從A,B兩個噴霧器中分別取1千克的藥水,將A中取得的倒入B中,B中取得的倒入A中,這樣操作進(jìn)行了n次后,A噴霧器中藥水的濃度為an%,B噴霧器中藥水的濃度為bn%.
(1)證明an+bn是一個常數(shù);
(2)求an與an-1的關(guān)系式;
(3)求an的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標(biāo)準(zhǔn)(噸)、一位居民的月用水量不超過的部分按平價收費,超出的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計的值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】人的卷舌與平舌(指是否能左右卷起來)同人的眼皮單雙一樣,也是由遺傳自父母的基因決定的,其中顯性基因記作D,隱性基因記作d;成對的基因中,只要出現(xiàn)了顯性基因,就一定是卷舌的(這就是說,“卷舌”的充要條件是“基因?qū)κ?/span>,或”).同前面一樣,決定眼皮單雙的基因仍記作B(顯性基因)和b(隱性基因).
有一對夫妻,兩人決定舌頭形態(tài)和眼皮單雙的基因都是,不考慮基因突變,求他們的孩子是卷舌且單眼皮的概率.(有關(guān)生物學(xué)知識表明:控制上述兩種不同性狀的基因遺傳時互不干擾).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知傾斜角為的直線經(jīng)過點.以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為
(1)寫出曲線的普通方程;
(2)若直線與曲線有兩個不同的交點,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com