函數(shù)f(x)=x3+x2-x-1在x=1處的導(dǎo)數(shù)等于
 
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:求出函數(shù)f(x)的導(dǎo)數(shù),再令x=1代入計(jì)算即可得到.
解答: 解:函數(shù)f(x)=x3+x2-x-1的導(dǎo)數(shù)為
f′(x)=3x2+2x-1,
則f(x)在x=1處的導(dǎo)數(shù)為f′(1)=3+2-1=4.
故答案為:4.
點(diǎn)評(píng):本題考查函數(shù)的導(dǎo)數(shù)求法以及導(dǎo)數(shù)值,考查運(yùn)算能力,運(yùn)用導(dǎo)數(shù)的運(yùn)算法則正確求導(dǎo)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

A、B、C、D四名同學(xué)排成一排照相,要求自左向右,A不排第一,B不排第四,則共有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α為銳角,且cos(α+
π
6
)=
3
5
,則sinα為(  )
A、
2
10
B、-
2
10
C、
4
3
-3
10
D、
3-4
3
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線的極坐標(biāo)方程為ρcosθ-ρsinθ+2=0,則它與曲線
x=sinα+cosα
y=1+sin2α
(α為參數(shù))的交點(diǎn)的直角坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

半徑為1的球面上有四個(gè)點(diǎn)A,B,C,D,球心為點(diǎn)O,AB過點(diǎn)O,CA=CB,DA=DB,DC=1,則三棱錐A-BCD的體積為( 。
A、
3
6
B、
3
3
C、
3
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O是△ABC內(nèi)任意一點(diǎn),連結(jié)AO、BO、CO并延長(zhǎng)交對(duì)邊于A′,B′,C′,則
OA′
AA′
+
OB′
BB′
+
OC′
CC′
=1,這是平面幾何中的一個(gè)命題,其證明方法常采用“面積法”:
OA′
AA′
+
OB′
BB′
+
OC′
CC′
=
S△OBC
S△ABC
+
S△OCA
S△ABC
+
S△OAB
S△ABC
=
S△ABC
S△ABC
=1.運(yùn)用類比猜想,對(duì)于空間四面體V-BCD中,任取一點(diǎn)O.連結(jié)VO、DO、BO、CO并延長(zhǎng)分別交四個(gè)面于E、F、G、H點(diǎn),則
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

P是雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的右支上的一點(diǎn),F(xiàn)1,F(xiàn)2分別是左、右焦點(diǎn),則△PF1F2的內(nèi)切圓圓心的橫坐標(biāo)為( 。
A、a
B、b
C、
a2+b2
D、a+b-
a2+b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=x3在點(diǎn)P(-2,-8)處的切線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于向量
PAi
(i=1,2,…,n)把能夠使得|
PA1
|+
PA2
|+…+|
PAn
取到最小值的點(diǎn)P稱為A,(i=1,2,…,n)的“平衡點(diǎn)”.如圖,矩形ABCD的兩條對(duì)角線相交于點(diǎn)O,延長(zhǎng)BC至點(diǎn)E,使得BC=CE,連接AE,分別交BD,CD于F,G兩點(diǎn).下列結(jié)論中,正確的是( 。
A、點(diǎn)A,C的“平衡點(diǎn)”必為點(diǎn)O
B、點(diǎn)D,C,E的“平衡點(diǎn)”為線段DE的中點(diǎn)
C、點(diǎn)A,F(xiàn),G,E的“平衡點(diǎn)”存在且唯一
D、點(diǎn)A,B,E,D的“平衡點(diǎn)”必在點(diǎn)F

查看答案和解析>>

同步練習(xí)冊(cè)答案