已知實數(shù)x、y滿足:
y-x+2≥0
x2+y2≤4
,則z=y-
3
x的取值范圍是
 
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:作出不等式組對應的平面區(qū)域,利用z的幾何意義,即可得到結論.
解答: 解:作出不等式組對應的平面區(qū)域(陰影部分),
由z=y-
3
x得y=
3
x+z,
平移直線y=
3
x,由圖象可知當直線經(jīng)過點C(2,0)時,直線y=
3
x+z的截距最小,此時z=-2
3

當直線y=
3
x+z與圓在第二象限相切時,直線y=
3
x+z的截距最大,
則d=
|z|
12+(
3
)2
=
|z|
2
=2
,解得z=±4,
故z的最大值為4,
則-2
3
≤z≤4,
故答案為:[-2
3
,4]
點評:本題主要考查線性規(guī)劃的應用以及直線和圓的位置關系,利用數(shù)形結合是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy中,以O為極點,x軸正半軸為極軸建立極坐標系,直線l過點N(4,0),傾斜角為α.
(1)寫出直線l的參數(shù)方程,及當α=
π
2
時,直線l的極坐標方程l′.
(2)已知從極點O作直線m與直線l′相交于點M,在OM上取一點P,使|OM|•|OP|=4,求點P的極坐標方程,并說明P的軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別是F1,F(xiàn)2,離心率為
3
2
,過F1且垂直于x軸的直線被橢圓C截得的線段長為1.
(1)求橢圓C的方程;
(2)點P是橢圓C上除長軸、短軸端點外的任一點,過點P作直線l,使得l與橢圓C有且只有一個公共點,設l與y軸的交點為A,過點P作與l垂直的直線m,設m與y軸的交點為B,求證:△PAB的外接圓經(jīng)過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在某個樣本的頻率分布直方圖中,共有7個小矩形,已知最中間的一個矩形的面積是其他6個矩形面積的
1
4
,又知樣本容量為80,則最中間一組的頻數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,點P為圓O的弦AB上的任意點,連結PO,使∠OPC=90°,PC交圓于C,若AP=4,PC=3,則PB=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校高一、高二、高三分別有學生1600名,1200名,800名.為了解該校高中學生的牙齒健康狀況
,按各年級的學生數(shù)進行分層抽樣,若高三抽取20名學生,則高一、高二共需抽取的學生數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知某算法的流程圖如圖所示,則程序運行結束時輸出的結果為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={(x,y)丨y=f(x)},若對于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1y1+x2y2=0成立,則稱集合M是“垂直對點集”.給出下列五個集合:
①M={(x,y)丨y=
1
x
};
②M={(x,y)丨y=(x-1)2};
③M={(x,y)丨y=sinx+1};
④M={(x,y)丨y=log3x};
⑤M={(x,y)丨y=ex-2}.
其中是“垂直對點集”的所有序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a,b∈R,則“a+b>4”是“a>2且b>2”的( 。
A、充分非必要條件
B、必要非充分條件
C、充要條件
D、既非充分又非必要條件

查看答案和解析>>

同步練習冊答案