已知數(shù)列{a
n}中a
1=1,且
=1-nan+1,則此數(shù)列{
}的通項公式為( )
分析:=1-nan+1,化為
-=n,利用疊加法,可求數(shù)列的通項.
解答:解:∵
=1-nan+1,
∴
-=n,
∴
=+(-)+…+(-)∵a
1=1,
∴
=1+1+2+…+(n-1)=
,
故選:A.
點評:本題考查數(shù)列的通項,考查疊加法的運用,考查學(xué)生的計算能力,正確轉(zhuǎn)化是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
已知數(shù)列{a
n}中,a
1=-10,且經(jīng)過點A(a
n,a
n+1),B(2
n,2
n+2)兩點的直線斜率為2,n∈N
*(1)求證數(shù)列
{}是等差數(shù)列,并求數(shù)列{a
n}的通項公式;
(2)求數(shù)列{a
n}的最小項.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知數(shù)列{an}中,an=3n+4,若an=13,則n等于( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知數(shù)列{a
n}中,
a1為由曲線y=,直線y=x-2及y軸所圍成圖形的面積的倍S
n為該數(shù)列的前n項和,且S
n+1=a
n(1-a
n+1)+S
n.
(1)求數(shù)列{a
n}的通項公式;
(2)若不等式
an+an+1+an+2+…+a3n>對一切正整數(shù)n都成立,求正整數(shù)a的最大值,并證明結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知數(shù)列{an}中,an=n2+(λ+1)n,(x∈N*),且an+1>an對任意x∈N*恒成立,則實數(shù)λ的取值范圍是( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知數(shù)列{an}中an=n2-kn(n∈N*),且{an}單調(diào)遞增,則k的取值范圍是( 。
查看答案和解析>>