精英家教網 > 高中數學 > 題目詳情

某中學高三文科班學生參加了數學與地理水平測試,學校從測試合格的學生中隨機抽取100人的成績進行統計分析.抽取的100人的數學與地理的水平測試成績如下表:

成績分為優(yōu)秀、良好、及格三個等級,橫向、縱向分別表示地理成績與數學成績,例如:表中數學成績?yōu)榱己玫墓灿?0+18+4=42人.
(1)若在該樣本中,數學成績優(yōu)秀率為30%,求a,b的值;
(2)若樣本中,求在地理成績及格的學生中,數學成績優(yōu)秀的人數比及格的人數少的概率.

(1); (2).  

解析試題分析:(1)由,得,
根據可得;
(2)由題意知,且,
滿足條件的,
共14組.
且每組出現的可能性相同.
其中數學成績優(yōu)秀的人數比及格的人數少的有:
共6組.利用古典概型概率的計算公式即得.
(1)由,得,                     3分

,;                                           6分
(2)由題意知,且,
∴滿足條件的,
共14組.
且每組出現的可能性相同.                                    9分
其中數學成績優(yōu)秀的人數比及格的人數少的有:
共6組.        11分
∴數學成績?yōu)閮?yōu)秀的人數比及格的人數少的概率為.        12分
考點:古典概型,頻率分布表.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知某單位有50名職工,現要從中抽取10名職工,將全體職工隨機按1~50編號,并按編號順序平均分成10組,按各組內抽取的編號依次增加5進行系統抽樣.

(1)若第5組抽出的號碼為22,寫出所有被抽出職工的號碼;
(2)分別統計這10名職工的體重(單位:公斤),獲得體重數據的莖葉圖如圖所示,求該樣本的方差;
(3)在(2)的條件下,從這10名職工中隨機抽取兩名體重不輕于73公斤(≥73公斤)的職工,求體重為76公斤的職工被抽取到的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(12分)(2011•福建)某日用品按行業(yè)質量標準分成五個等級,等級系數X依次為1,2,3,4,5.現從一批該日用品中隨機抽取20件,對其等級系數進行統計分析,得到頻率分布表如下:

X
1
2
3
4
5
f
a
0.2
0.45
b
c
(Ⅰ)若所抽取的20件日用品中,等級系數為4的恰有3件,等級系數為5的恰有2件,求a、b、c的值;
(Ⅱ)在(Ⅰ)的條件下,將等級系數為4的3件日用品記為x1,x2,x3,等級系數為5的2件日用品記為y1,y2,現從x1,x2,x3,y1,y2,這5件日用品中任取兩件(假定每件日用品被取出的可能性相同),寫出所有可能的結果,并求這兩件日用品的等級系數恰好相等的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

小區(qū)統計部門隨機抽查了區(qū)內名網友4月1日這天的網購情況,得到如下數據統計表(圖(1)).網購金額超過千元的顧客被定義為“網購紅人”,網購金額不超過千元的顧客被定義為“非網購紅人”.已知“非網購紅人”與“網購紅人”人數比恰為.
(1)確定的值,并補全頻率分布直方圖(圖(2)).
(2)為進一步了解這名網友的購物體驗,從“非網購紅人”和“網購紅人”中用分層抽樣的方法確定人,若需從這人中隨機選取人進行問卷調查,設為選取的人中“網購紅人”的人數,求的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2013年11月,青島發(fā)生輸油管道爆炸事故造成膠州灣局部污染.國家海洋局用分層抽樣的方法從國家環(huán)保專家、海洋生物專家、油氣專家三類專家?guī)熘谐槿∪舾扇私M成研究小組赴泄油海域工作,有關數據見表1(單位:人)

海洋生物專家為了檢測該地受污染后對海洋動物身體健康的影響,隨機選取了只海豚進行了檢測,并將有關數據整理為不完整的列聯表,如表2.
(1)求研究小組的總人數;
(2)寫出表2中、、、、的值,并判斷有多大的把握認為海豚身體不健康與受到污染有關;
(3)若從研究小組的環(huán)保專家和海洋生物專家中隨機選人撰寫研究報告,求其中恰好有人為環(huán)保專家的概率.
附:①,其中.















 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某種產品的質量以其質量指標值衡量,質量指標值越大表明質量越好,且質量指標值大于或等于102的產品為優(yōu)質品,現用兩種新配方(分別稱為A配方和B配方)做試驗,各生產了100件這種產品,并測量了每件產品的質量指標值,得到下面試驗結果:

(1)分別估計用A配方,B配方生產的產品的優(yōu)質品率;
(2)已知用B配方生成的一件產品的利潤y(單位:元)與其質量指標值t的關系式為

從用B配方生產的產品中任取一件,其利潤記為X(單位:元),求X的分布列及數學期望.(以試驗結果中質量指標值落入各組的頻率作為一件產品的質量指標值落入相應組的概率)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

“根據《中華人民共和國道路交通安全法》規(guī)定:車輛駕駛員血液酒精濃度在20~80 mg/100ml(不含80)之間,屬于酒后駕車,血液酒精濃度在80mg/100ml(含80)以上時,屬醉酒駕車.”某市交警在該市一交通崗前設點對過往的車輛進行抽查,經過一晚的抽查,共查出酒后駕車者60名,圖甲是用酒精測試儀對這60 名酒后駕車者血液中酒精濃度進行檢測后依所得結果畫出的頻率分布直方圖.

(1)統計方法中,同一組數據常用該組區(qū)間的中點值作為代表,圖乙的程序框圖是對這60名酒后駕車者血液的酒精濃度做進一步的統計,求出圖乙輸出的S的值,并說明S的統計意義;(圖乙中數據分別表示圖甲中各組的組中值及頻率)

(2)本次行動中,吳、李兩位先生都被酒精測試儀測得酒精濃度屬于70~90的范圍,但他倆堅稱沒喝那么多,是測試儀不準,交警大隊隊長決定在被酒精測試儀測得酒精濃度屬于70~90范圍的酒后駕車者中隨機抽出2人抽血檢驗,設為吳、李兩位先生被抽中的人數,求的分布列,并求吳、李兩位先生至少有1人被抽中的概率;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知某中學高三文科班學生共有800人參加了數學與地理的水平測試,現學校決定利用隨機數表法從中抽取100人進行成績抽樣調查,先將800人按001,002, ,800進行編號;
(1)如果從第8行第7列的數開始向右讀,請你依次寫出最先檢查的3個人的編號;
(下面摘取了第7行到第9行)

(2)抽取的100的數學與地理的水平測試成績如下表:
成績分為優(yōu)秀、良好、及格三個等級;橫向,縱向分別表示地理成績與數學成績,例如:表中數學成績?yōu)榱己玫墓灿?0+18+4=42,若在該樣本中,數學成績優(yōu)秀率是30%,求a,b的值:

人數
數學
優(yōu)秀
良好
及格
地理
優(yōu)秀
7
20
5
良好
9
18
6
及格
a
4
b
(3)在地理成績及格的學生中,已知求數學成績?yōu)閮?yōu)秀的人數比及格的人數少的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某興趣小組欲研究晝夜溫差大小與患感冒人數多少之間的關系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數,得到如下資料:

日期
1月
10日
2月
10日
3月
10日
4月
10日
5月
10日
6月
10日
晝夜溫差
x(℃)
10
11
13
12
8
6
就診人數
y(個)
22
25
29
26
16
12
該興趣小組確定的研究方案是:先從這六組數據中選取2組,用剩下的4組數據求線性回歸方程,再用被選取的2組數據進行檢驗.
(1)求選取的2組數據恰好是相鄰兩個月的概率.
(2)若選取的是1月與6月的兩組數據,請根據2至5月份的數據,求出y關于x的線性回歸方程=x+.
(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
(參考公式:==,=-).

查看答案和解析>>

同步練習冊答案