【題目】我國(guó)南宋數(shù)學(xué)家秦九韶所著《數(shù)學(xué)九章》中有“米谷粒分”問(wèn)題:糧倉(cāng)開(kāi)倉(cāng)收糧,糧農(nóng)送來(lái)米1512石,驗(yàn)得米內(nèi)夾谷,抽樣取米一把,數(shù)得216粒內(nèi)夾谷27粒,則這批米內(nèi)夾谷約( )
A.164石
B.178石
C.189石
D.196石
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄AM與圓C1:(x+4)2+y2=2外切,與圓C2:(x﹣4)2+y2=2內(nèi)切,求動(dòng)圓圓心M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2cosxcos-sin2x+sinxcosx.
(1)求f(x)的最小正周期;
(2)若關(guān)于x的方程在x∈上有兩個(gè)不同的實(shí)根,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐P﹣ABCD的底面為矩形,PA⊥平面ABCD,PA=AB=2,AD=1,點(diǎn)M為PC中點(diǎn),過(guò)A、M的平面α與此四棱錐的面相交,交線圍成一個(gè)四邊形,且平面α⊥平面PBC.
(1)在圖中畫(huà)出這個(gè)四邊形(不必說(shuō)出畫(huà)法和理由);
(2)求平面α與平面ABM所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出的以下四個(gè)問(wèn)題中,不需要用條件語(yǔ)句來(lái)描述其算法是( )
A.輸入一個(gè)實(shí)數(shù)x,求它的絕對(duì)值
B.求面積為6的正方形的周長(zhǎng)
C.求三個(gè)數(shù)a、b、c中的最大數(shù)
D.求函數(shù)f(x)= 的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面四邊形ABCD中,AD=1,CD=2,AC= .
(1)求cos∠CAD的值;
(2)若cos∠BAD=﹣ ,sin∠CBA= ,求BC的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在銳角三角形ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足b2﹣a2=ac,則 ﹣ 的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2﹣(m+1)x+m,g(x)=﹣(m+4)x﹣4+m,m∈R.
(1)比較f(x)與g(x)的大小;
(2)解不等式f(x)≤0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題12分)已知函數(shù) .
(1)若=0,判斷函數(shù)的單調(diào)性;
(2)若時(shí),<0恒成立,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com