精英家教網 > 高中數學 > 題目詳情
已知f(x)=x3-6ax2+9a2x(a∈R).
(Ⅰ)求函數f(x)的單調遞減區(qū)間;
(Ⅱ)當a>0時,若對?x∈[0,3]有f(x)≤4恒成立,求實數a的取值范圍.
【答案】分析:(1)先對函數f(x)進行求導,然后對a進行分析討論求f'(x)<0的x的范圍.
(2)先根據導函數的解析式確定函數f(x)的單調性,然后根據a的不同范圍進行討論進而確定其答案.
解答:解:(Ⅰ)f′(x)=3x2-12ax+9a2=3(x-a)(x-3a)<0
(1)當a=3a,即a=0時,f'(x)=3x2>0,不成立.
(2)當a>3a,即a<0時,單調減區(qū)間為(3a,a).
(3)當a<3a,即a>0時,單調減區(qū)間為(a,3a).
(Ⅱ)f'(x)=3x2-12ax+9a2=3(x-a)(x-3a),
f(x)在(0,a)上遞增,在(a,3a)上遞減,在(3a,+∞)上遞增.
(1)當a≥3時,函數f(x)在[0,3]上遞增,
所以函數f(x)在[0,3]上的最大值是f(3),
若對?x∈[0,3]有f(x)≤4恒成立,需要有解得a∈φ.
(2)當1≤a<3時,有a<3≤3a,此時函數f(x)在[0,a]上遞增,在[a,3]上遞減,
所以函數f(x)在[0,3]上的最大值是f(a),
若對?x∈[0,3]有f(x)≤4恒成立,需要有解得a=1.
(3)當a<1時,有3>3a,此時函數f(x)在[a,3a]上遞減,在[3a,3]上遞增,
所以函數f(x)在[0,3]上的最大值是f(a)或者是f(3).
由f(a)-f(3)=(a-3)2(4a-3),
時,f(a)≤f(3),
若對?x∈[0,3]有f(x)≤4恒成立,需要有
解得
時,f(a)>f(3),
若對?x∈[0,3]有f(x)≤4恒成立,需要有解得
綜上所述,
點評:本題主要考查函數的單調性與其導函數的正負情況之間的關系,即當導函數大于0時原函數單調遞增,當導函數小于0時原函數單調遞減.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f(x)=x3+mx2-x+2(m∈R).
(1)如果函數f(x)的單調遞減區(qū)間為(
13
,1),求函數f(x)的解析式;
(2)若f(x)的導函數為f′(x),對任意x∈(0,+∞),不等式f′(x)≥2xlnx-1恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=x3+ax2-(2a+3)x+a2(a∈R).
(1)若曲線y=f(x)在x=-1處的切線與直線2x-y-1=0平行,求a的值;
(2)當a=-2時,求f(x)的單調區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=x3+x-2在點P處的切線與直線y=4x-1平行,則切點P的坐標是
(1,0)或(-1,-4)
(1,0)或(-1,-4)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=x3+asinx-b
3x
+9(a,b∈R),且f(-2013)=7,則f(2013)=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=x3+3x2+a(a為常數) 在[-3,3]上有最小值3,求f(x)在[-3,3]上的最大值?

查看答案和解析>>

同步練習冊答案