9.設(shè)全集U={x∈N*|x≤5},A={1,4},B={4,5},則∁U(A∩B)=( 。
A.{1,2,3,5}B.{1,2,4,5}C.{1,3,4,5}D.{2,3,4,5}

分析 根據(jù)集合的定義與性質(zhì),進(jìn)行計(jì)算即可.

解答 解:∵全集U={x∈N*|x≤5}={1,2,3,4,5},
A={1,4},B={4,5},
∴A∩B={4};
∴∁U(A∩B)={1,2,3,5}.
故選:A.

點(diǎn)評(píng) 本題考查了集合的化簡(jiǎn)與運(yùn)算問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如圖的莖葉圖表示的是甲、乙兩人在5天內(nèi)加工零件的個(gè)數(shù),其中一個(gè)數(shù)字不小心被污損,已知甲的平均數(shù)等于乙的平均數(shù),則污損的數(shù)字是( 。
A.5B.1C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)雙曲線(xiàn)C的焦點(diǎn)在x軸上,漸近線(xiàn)方程為y=$±\frac{\sqrt{2}}{2}$x,則其離心率為$\frac{\sqrt{6}}{2}$;若點(diǎn)(4,2)在C上,則雙曲線(xiàn)C的方程為$\frac{{x}^{2}}{8}-\frac{{y}^{2}}{4}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.雙曲線(xiàn)C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$兩條漸近線(xiàn)l1、l2與拋物線(xiàn)y2=-4x的準(zhǔn)線(xiàn)l圍成區(qū)域Ω(包含邊界),對(duì)于區(qū)域Ω內(nèi)任一點(diǎn)(x,y),若$\frac{y+1}{x+3}$的最大值小于1,則雙曲線(xiàn)C的離心率e的取值范圍為(1,$\sqrt{10}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下列命題是假命題的是(  )
A.?φ∈R,函數(shù)f(x)=sin(2x+φ)都不是偶函數(shù)
B.?α,β∈R,使cos(α+β)=cosα+cosβ
C.向量$\overrightarrow a$=(-2,1),$\overrightarrow b$=(-3,0),則$\overrightarrow a$在$\overrightarrow b$方向上的投影為2
D.“|x|≤1”是“x<1”的既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)雙曲線(xiàn)方程$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{3}$=1的焦點(diǎn)分別為F1,F(xiàn)2,離心率為2,設(shè)A、B分別為雙曲線(xiàn)漸近線(xiàn)l1,l2上的動(dòng)點(diǎn),且2|AB|=5|F1F2|,則線(xiàn)段AB的中點(diǎn)M的軌跡方程為( 。
A.直線(xiàn)B.C.橢圓D.雙曲線(xiàn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知O為△ABC的外心,|$\overrightarrow{AB}$|=16,|$\overrightarrow{AC}$|=10$\sqrt{2}$,若$\overrightarrow{AO}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,且32x+25y=25,則∠B=( 。
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.求下列函數(shù)的定義域:
(1)y=$\sqrt{cosx}$;
(2)y=lg(2sinx-1);
(3)y=$\frac{1}{1+sinx}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知對(duì)任何實(shí)數(shù)x,(x+a)•(x+1)10=a1x11+a2x10+a3x9+…+a11x+2,則a=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案