【題目】 已知函數(shù)f(x)=ax3+bx2的圖象經(jīng)過點M(1,4),曲線在點M處的切線恰好與直線x+9y﹣3=0垂直.

(1)求實數(shù)a、b的值

(2)若函數(shù)f(x)在區(qū)間[m,m+1]上單調(diào)遞增,求m的取值范圍.

【答案】1;(2。

【解析】

(1)∵f(x)ax3bx2的圖象經(jīng)過點M(1,4),

ab4.①

f′(x)3ax22bx,則f′(1)3a2b,

由條件f′(1)·()=-1,即3a2b9,

①②式解得a1b3.

(2)f(x)x33x2,f′(x)3x26x,令f′(x)3x26x≥0x≥0x2,

f(x)的單調(diào)遞增區(qū)間為(,-2][0,+∞)由條件知m≥0m1≤2

m≥0m3.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在一場娛樂晚會上,有5位民間歌手(1至5號)登臺演唱,由現(xiàn)場數(shù)百名觀眾投票選出最受歡迎歌手.各位觀眾須彼此獨立地在選票上選3名歌手,其中觀眾甲是1號歌手的歌迷,他必選1號,不選2號,另在3至5號中隨機選2名.觀眾乙和丙對5位歌手的演唱沒有偏愛,因此在1至5號中隨機選3名歌手.
(1)求觀眾甲選中3號歌手且觀眾乙未選中3號歌手的概率;
(2)X表示3號歌手得到觀眾甲、乙、丙的票數(shù)之和,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】兩條平行直線和圓的位置關(guān)系定義為:若兩條平行直線和圓有四個不同的公共點,則稱兩條平行線和圓“相交”;若兩條平行直線和圓沒有公共點,則稱兩條平行線和圓“相離”;若兩平行直線和圓有一個、兩個或三個不同的公共點,則稱兩條平行線和圓“相切”.已知直線,,和圓相切,則的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2(a+2)x+a2 , g(x)=﹣x2+2(a﹣2)x﹣a2+8.設(shè)H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)},(max{p,q})表示p,q中的較大值,min{p,q}表示p,q中的較小值),記H1(x)的最小值為A,H2(x)的最大值為B,則A﹣B=( )
A.16
B.﹣16
C.﹣16a2﹣2a﹣16
D.16a2+2a﹣16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱錐P-ABC的三條側(cè)棱兩兩互相垂直,且AB=,BC=,AC=2,則此三棱錐外接球的表面積為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有10道題,其中6道甲類題,4道乙類題,張同學從中任取3道題解答.
(1)求張同學至少取到1道乙類題的概率;
(2)已知所取的3道題中有2道甲類題,1道乙類題.設(shè)張同學答對甲類題的概率都是 ,答對每道乙類題的概率都是 ,且各題答對與否相互獨立.用X表示張同學答對題的個數(shù),求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分14分)已知過原點的動直線與圓 相交于不同的兩點,

1)求圓的圓心坐標;

2)求線段的中點的軌跡的方程;

3)是否存在實數(shù),使得直線 與曲線只有一個交點?若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,已知cosC+(cosA﹣ sinA)cosB=0.
(1)求角B的大;
(2)若a+c=1,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形所在的半平面和直角梯形所在的半平面成的二面角,,,,.

(Ⅰ)求證:平面平面;

(Ⅱ)試問在線段上是否存在一點,使銳二面角的余弦值為.若存在,請求出的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案