已知橢圓=1,點P為其上一點,F(xiàn)1、F2為橢圓的焦點,Q為射線F1P延長線上一點,且|PQ|=|PF2|,設(shè)R為F2Q的中點.
(1)當P點在橢圓上運動時,求R形成的軌跡方程;
(2)設(shè)點R形成的曲線為C,直線l:y=k(x+4)與曲線C相交于A、B兩點,若∠AOB=90°時,求k的值.

【答案】分析:(1)F1(-2,0),F(xiàn)2(2,0)設(shè)R(x,y),Q(x1,y1).由|PQ|=|PF2|,知|F1Q|=|F2P|+|PQ|=|F1P|+|PF2|=8,所以(x1+2)2+y12=64,由此能導(dǎo)出R的軌跡方程.
(2)當∠AOB=90°時,在Rt△AOC中,∠AOC=45°,此時弦心距|OC|=,又|OC|=.由此能導(dǎo)出k的值.
解答:解:(1)F1(-2,0),F(xiàn)2(2,0)設(shè)R(x,y),Q(x1,y1).∵|PQ|=|PF2|,
∴|F1Q|=|F2P|+|PQ|=|F1P|+|PF2|=8,則(x1+2)2+y12=64.(4分)
得x1=2x-2,y1=2y.
∴(2x)2+(2y)2=64,故R的軌跡方程為:x2+y2=16(7分)
(2)如圖,當∠AOB=90°時,
在Rt△AOC中,∠AOC=45°,此時弦心距|OC|=
又|OC|=.由=.(12分)
點評:本題考查直線和圓錐曲線的位置關(guān)系的綜合運用,解題時要認真審題,注意挖掘題設(shè)中的隱含條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓數(shù)學(xué)公式=1,點P為其上一點,F(xiàn)1、F2為橢圓的焦點,Q為射線F1P延長線上一點,且|PQ|=|PF2|,設(shè)R為F2Q的中點.
(1)當P點在橢圓上運動時,求R形成的軌跡方程;
(2)設(shè)點R形成的曲線為C,直線l:y=k(x+4數(shù)學(xué)公式)與曲線C相交于A、B兩點,若∠AOB=90°時,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓數(shù)學(xué)公式+數(shù)學(xué)公式=1經(jīng)過點P(數(shù)學(xué)公式,數(shù)學(xué)公式),離心率是數(shù)學(xué)公式,動點M(2,t)(t>0)
(1)求橢圓的標準方程;
(2)求以O(shè)M為直徑且別直線3x-4y-5=0截得的弦長為2的圓的方程;
(3)設(shè)F是橢圓的右焦點,過點F做OM的垂線與以O(shè)M為直徑的圓交于點N,證明線段ON長是定值,并求出定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省無錫市江陰市成化中學(xué)高二(上)周練數(shù)學(xué)試卷(7)(解析版) 題型:解答題

已知橢圓+=1經(jīng)過點P(,),離心率是,動點M(2,t)(t>0)
(1)求橢圓的標準方程;
(2)求以O(shè)M為直徑且別直線3x-4y-5=0截得的弦長為2的圓的方程;
(3)設(shè)F是橢圓的右焦點,過點F做OM的垂線與以O(shè)M為直徑的圓交于點N,證明線段ON長是定值,并求出定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年北京市石景山區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知橢圓+=1經(jīng)過點P(),離心率是,動點M(2,t)(t>0)
(1)求橢圓的標準方程;
(2)求以O(shè)M為直徑且別直線3x-4y-5=0截得的弦長為2的圓的方程;
(3)設(shè)F是橢圓的右焦點,過點F做OM的垂線與以O(shè)M為直徑的圓交于點N,證明線段ON長是定值,并求出定值.

查看答案和解析>>

同步練習(xí)冊答案