【題目】已知,
.
(1)如果函數(shù)的單調(diào)遞減區(qū)間為
,求函數(shù)
的解析式;
(2)在(1)的條件下,求函數(shù)的圖象在點(diǎn)
處的切線方程;
(3)已知不等式恒成立,若方程
恰有兩個(gè)不等實(shí)根,求
的取值范圍.
【答案】(1);(2)
;(3)
.
【解析】
試題分析:(1)的解集為
的兩根分別是
,
;(2)由(1)知
點(diǎn)
處的切線斜率
函數(shù)
的圖象在點(diǎn)
處的切線方程為
即
;(3)由題意知
對
上恒成立,設(shè)
,再由導(dǎo)數(shù)工具取得
.令
在
遞減,在
遞增,∵
,
,當(dāng)
時(shí),
只需
.
試題解析: (1),
由題意的解集為
,
即的兩根分別是
,
,
代入得,
∴.
(2)由(1)知,,∴
,
,
∴點(diǎn)處的切線斜率
,
∴函數(shù)的圖象在點(diǎn)
處的切線方程為
,
即.
(3)由題意知對
上恒成立,
可得對
上恒成立,
設(shè),
則,
令,得
,
(舍),
當(dāng)時(shí),
;當(dāng)
時(shí),
,
∴當(dāng)時(shí),
取得最大值,
,∴
.
令,則
,所以
在
遞減,在
遞增,
∵,
,當(dāng)
時(shí),
,
所以要把方程恰有兩個(gè)不等實(shí)根,只需
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式組
(1) 若k=1,求不等式組的解集;
(2) 若不等式組的整數(shù)解的集合為{-2},求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,S1=-,an-4SnSn-1=0(n≥2).
(1) 若bn=,求證:{bn}是等差數(shù)列;
(2) 求數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】天水市第一次聯(lián)考后,某校對甲、乙兩個(gè)文科班的數(shù)學(xué)考試成績進(jìn)行分析,
規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計(jì)成績后,
得到如下的列聯(lián)表,且已知在甲、乙兩個(gè)文科班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為
.
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
甲班 | 10 | ||
乙班 | 30 | ||
合計(jì) | 110 |
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認(rèn)為“成績與班級有關(guān)系”;
(3)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人:把甲班優(yōu)秀的10名學(xué)生從2到11進(jìn)行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點(diǎn)數(shù)之和為被抽取人的序號。試求抽到9號或10號的概率。
參考公式與臨界值表:。
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是偶函數(shù).
(1)求的值;
(2)若函數(shù)的圖象與直線
沒有交點(diǎn),求b的取值范圍;
(3)設(shè),若函數(shù)
與
的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,
為正三角形,平面
平面
,
,
,
.
(1)求證:平面平面
;
(2)求三棱錐的體積;
(3)在棱上是否存在點(diǎn)
,使得
平面
?若存在,請確定點(diǎn)
的位置并證明;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+1,x∈R.
(1)分別計(jì)算f(1)-f(-1),f(2)-f(-2),f(3)-f(-3)的值;
(2)由(1)你發(fā)現(xiàn)了什么結(jié)論?并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),對任意實(shí)數(shù)
,
.
(1)在
上是單調(diào)遞減的,求實(shí)數(shù)
的取值范圍;
(2)若對任意
恒成立,求正數(shù)
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com