如圖所示,PA為0的切線,A為切點(diǎn),PBC是過(guò)點(diǎn)O的割線,PA ="10,PB" =5、
(I)求證:;
(2)求AC的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,是圓的內(nèi)接四邊形,,過(guò)點(diǎn)的圓的切線與的延長(zhǎng)線交于點(diǎn),證明:
(Ⅰ)
(II)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖AB為圓O直徑,P為圓O外一點(diǎn),過(guò)P點(diǎn)作PC⊥AB,垂是為C,PC交圓O于D點(diǎn),PA交圓O于E點(diǎn),BE交PC于F點(diǎn)。
(I)求證:∠PFE=∠PAB (II)求證:CD2=CF·CP
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
[選修4 - 1:幾何證明選講](本小題滿分10分)
如圖,在梯形中,∥BC,點(diǎn),分別在邊,上,設(shè)與相交于點(diǎn),若,,,四點(diǎn)共圓,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(滿分10分)
如下圖,AB、CD是圓的兩條平行弦,BE//AC,BE交CD于E、交圓于F,過(guò)A點(diǎn)的切線交DC的延長(zhǎng)線于P,PC=ED=1,PA=2.
(I)求AC的長(zhǎng);
(II)求證:BE=EF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分10分)
如圖,已知與圓相切于點(diǎn),經(jīng)過(guò)點(diǎn)的割線交圓于點(diǎn),的平分線分別交于點(diǎn).
(Ⅰ)證明:=;
(Ⅱ)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
選修4-1:幾何證明選講
如圖,圓O1與圓O2相交于A、B兩點(diǎn),AB是圓O2的直徑,過(guò)A點(diǎn)作圓O1的切線交圓O2于點(diǎn)E,并與BO1的延長(zhǎng)線交于點(diǎn)P,PB分別與圓O1、圓O2交于C,D兩點(diǎn)。
求證:(Ⅰ)PA·PD=PE·PC;(Ⅱ)AD=AE。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(10分)如圖,A,B,C,D四點(diǎn)在同一圓上,AD的延長(zhǎng)線與BC的延長(zhǎng)線交于E點(diǎn),且EC=ED。
(1)證明:CD//AB;(2)延長(zhǎng)CD到F,延長(zhǎng)DC到G,使得EF=EG,證明:A,B,G,F(xiàn)四點(diǎn)共圓。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分14分)
如圖甲,在平面四邊形ABCD中,已知,,現(xiàn)將四邊形ABCD沿BD折起,使平面ABD平面BDC(如圖乙),設(shè)點(diǎn)E、F分別為棱AC、AD的中點(diǎn).
(1)求證:DC平面ABC;
(2)求BF與平面ABC所成角的正弦;
(3)求二面角B-EF-A的余弦
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com