過橢圓+=1(a>b>0)的左焦點F1作x軸的垂線交橢圓于點P,F(xiàn)2為右焦點,若∠F1PF2=60°,則橢圓的離心率為( )
A.
B.
C.
D.
【答案】分析:把x=-c代入橢圓方程求得P的坐標,進而根據∠F1PF2=60°推斷出=整理得e2+2e-=0,進而求得橢圓的離心率e.
解答:解:由題意知點P的坐標為(-c,)或(-c,-),
∵∠F1PF2=60°,
=,
即2ac=b2=(a2-c2).
e2+2e-=0,
∴e=或e=-(舍去).
故選B.
點評:本題主要考查了橢圓的簡單性質,考查了考生綜合運用橢圓的基礎知識和分析推理的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:《2.1 橢圓》2013年同步練習2(解析版) 題型:選擇題

過橢圓+=1(a>b>0)的左焦點F1作x軸的垂線交橢圓于點P,F(xiàn)2為右焦點,若∠F1PF2=60°,則橢圓的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源:《第2章 圓錐曲線與方程》2013年單元測試卷(梅河口五中)(解析版) 題型:選擇題

以過橢圓+=1(a>b>0)的右焦點的弦為直徑的圓與其右準線的位置關系是( )
A.相交
B.相切
C.相離
D.不能確定

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年重慶市第二外國語學校高二(上)期中數(shù)學試卷(理科)(解析版) 題型:解答題

(如圖)過橢圓=1(a>b>0)的左焦點F任作一條與兩坐標軸都不垂直的弦AB;若點M在x軸上,且使得MF為△AMB的一條內角平分線,則稱點M為該橢圓的“左特征點”.
(1)求橢圓=1的“左特征點”M的坐標.
(2)試根據(1)中的結論猜測:橢圓=1(a>b>0)的“左特征點”M是一個怎么樣的點?并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高三數(shù)學第一輪復習鞏固與練習:圓錐曲線方程(解析版) 題型:選擇題

過橢圓+=1(a>b>0)的左焦點F1作x軸的垂線交橢圓于點P,F(xiàn)2為右焦點,若∠F1PF2=60°,則橢圓的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案