分析 先利用排列組合公式,將原式化簡成$\underset{lim}{n→∞}$$\frac{3}{2}•\frac{{n}^{2}-n}{{n}^{2}+2n+1}$的形式,再求極限.
解答 解:$\underset{lim}{n→∞}$$\frac{{P}_{n}^{2}+{C}_{n}^{2}}{(n+1)^{2}}$=$\underset{lim}{n→∞}$$\frac{n(n-1)+\frac{n(n-1)}{2}}{(n+1)^{2}}$=$\underset{lim}{n→∞}$$\frac{3}{2}•\frac{{n}^{2}-n}{{n}^{2}+2n+1}$
=$\frac{3}{2}$.
故答案為:$\frac{3}{2}$.
點(diǎn)評 本題考查通過化簡求極限值,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | 3$\sqrt{2}$ | C. | $\frac{3\sqrt{3}}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | -i | D. | i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2n | B. | 2n | C. | 2n+1-2 | D. | n2+n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=sin|x| | B. | y=cos|x| | C. | y=tan|x| | D. | y=(x2+1)0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com