判斷正誤:

兩相交直線l1:x + y - 2 = 0和 l2:7x - y + 4 = 0 所夾銳角的平分線方程是x - 3y + 7 = 0

(    )

答案:F
解析:

解: 由

得交點(-,)

設(shè)角平分線的斜率為k

則||= ||

即 3k2+ 8k - 3 = 0

∴ k = -3, k =(舍去)

所求方程為 y -  = -3(x + )

即  6x + 2y - 3 = 0


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

4、兩條相交直線l、m都在平面α內(nèi)且都不在平面β內(nèi).命題甲:l和m中至少有一條與β相交,命題乙:平面α與β相交,則甲是乙的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-(a+2)x+alnx.其中常數(shù)a>0.
(1)當a>2時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當a=4時,給出兩類直線:6x+y+m=0與3x-y+n=0,其中m,n為常數(shù),判斷這兩類直線中是否存在y=f(x)的切線,若存在,求出相應(yīng)的m或n的值,若不存在,說明理由.
(3)設(shè)定義在D上的函數(shù)y=h(x)在點P(x0,h(x0))處的切線方程為l:y=g(x),當x≠x0時,若
h(x)-g(x)x-x0
>0
在D內(nèi)恒成立,則稱P為函數(shù)y=h(x)的“類對稱點”,當a=4時,試問y=f(x)是否存在“類對稱點”,若存在,請至少求出一個“類對稱點”的橫坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:008

判斷正誤: 

兩條直線在一個平面上的射影互相平行, 則這兩條直線平行.

(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:008

判斷正誤:

已知直線l 被直線l1:3x+4y-8=0和l2:3x+4y-2=0所截得的線段長為

2, 則:

1.直線l 的斜率是或-7,

(  )

2.傾斜角是arctan, π-arctan7

(    )

查看答案和解析>>

同步練習(xí)冊答案