9.?dāng)?shù)列{an}的通項公式an=$\frac{1}{\sqrt{n}+\sqrt{n+1}}$,則該數(shù)列的前100項之和等于$\sqrt{101}$-1.

分析 求得an=$\frac{1}{\sqrt{n}+\sqrt{n+1}}$=$\sqrt{n+1}$-$\sqrt{n}$,運用數(shù)列的求和方法:裂項相消求和,化簡整理,即可得到所求和.

解答 解:an=$\frac{1}{\sqrt{n}+\sqrt{n+1}}$=$\sqrt{n+1}$-$\sqrt{n}$,
可得數(shù)列的前100項之和為($\sqrt{2}$-1)+($\sqrt{3}$-$\sqrt{2}$)+(2-$\sqrt{3}$)+…+($\sqrt{101}$-10)=$\sqrt{101}$-1.
故答案為:$\sqrt{101}$-1.

點評 本題考查數(shù)列的求和方法:裂項相消求和,考查化簡整理的運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,圖1是定義在R上的指數(shù)函數(shù)g(x)的圖象,圖2是定義在(0,+∞)上的對數(shù)函數(shù)h(x)的圖象,設(shè)f(x)=h(g(x)-1).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求方程f(x)-x+1=0的解;
(Ⅲ)求不等式f(x)<2成立的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知∠A,∠B為△ABC的內(nèi)角,且(1+tanA)(1+tanB)=2,求∠A+∠B的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,若$\frac{si{n}^{2}B+si{n}^{2}C}{si{n}^{2}A}$=1,則△ABC是( 。
A.直角三角形B.等邊三角形C.鈍角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若實數(shù)a,b,c,d滿足|b+$\frac{1}{2}$a2-4lna|+|3c-d+2|=0,則(a-c)2+(b-d)2的最小值為$\frac{121}{40}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.cos91°cos29°-sin91°sin29°的值為$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖,在平行四邊形ABCD中,AE⊥DB,垂足為E,且AE=3,若F為CE的中點,則$\overrightarrow{AE}$•$\overrightarrow{DF}$=$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=ax+b(x∈[0,1]),則“a+3b>0”是“f(x)>0恒成立”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在三棱臺ABC-DEF中,已知平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3,
(Ⅰ)求證:BF⊥平面ACFD;
(Ⅱ)求二面角B-AD-F的余弦值.

查看答案和解析>>

同步練習(xí)冊答案