【題目】已知中國(guó)某手機(jī)品牌公司生產(chǎn)某款手機(jī)的年固定成本為40萬(wàn)元,每生產(chǎn)1萬(wàn)部還需另投入16萬(wàn)元.設(shè)公司一年內(nèi)共生產(chǎn)該款手機(jī)萬(wàn)部并全部銷量完,每萬(wàn)部的銷售收入為萬(wàn)元,且

1)寫出年利潤(rùn)萬(wàn)元關(guān)于年產(chǎn)量(萬(wàn)部)的函數(shù)解析式;

2)當(dāng)年產(chǎn)量為多少萬(wàn)部時(shí),公司在該款手機(jī)的生產(chǎn)中所獲得的利潤(rùn)最大?并求出最大利潤(rùn).

【答案】12)當(dāng)年產(chǎn)量為萬(wàn)部時(shí),取得最大值6104萬(wàn)元.

【解析】

試題分析:1)利用利潤(rùn)等于收入減去成本,可得分段函數(shù)解析式;

2)分段求出函數(shù)的最大值,比較可得結(jié)論.

試題解析:1)當(dāng)時(shí),,

當(dāng)時(shí),

所以

2當(dāng)時(shí),,

所以

當(dāng)時(shí),

由于,

當(dāng)且僅當(dāng),即時(shí),等號(hào)成立,

所以取最大值為5760

綜合①②知,當(dāng)時(shí),取得最大值6104萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若四面體的三組對(duì)棱分別相等,即

給出下列結(jié)論:

四面體每個(gè)面的面積相等;

從四面體每個(gè)頂點(diǎn)出發(fā)的三條棱兩兩夾角之和大于 而小于 ;

連結(jié)四面體每組對(duì)棱中點(diǎn)的線段相互垂直平分;

從四面體每個(gè)頂點(diǎn)出發(fā)的三條棱的長(zhǎng)可作為一個(gè)三角形的三邊長(zhǎng);

其中正確結(jié)論的序號(hào)是__________。(寫出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高二奧賽班N名學(xué)生的物理測(cè)評(píng)成績(jī)(滿分120分)分布直方圖如下,已知分?jǐn)?shù)在100~110的學(xué)生數(shù)有21人。

(Ⅰ)求總?cè)藬?shù)N和分?jǐn)?shù)在110~115分的人數(shù)n;

(Ⅱ)現(xiàn)準(zhǔn)備從分?jǐn)?shù)在110~115分的n名學(xué)生(女生占)中任選2人,求其中恰好含有一名女生的概率;

(Ⅲ)為了分析某個(gè)學(xué)生的學(xué)習(xí)狀態(tài),對(duì)其下一階段的學(xué)習(xí)提供指導(dǎo)性建議,對(duì)他前7次考試的數(shù)學(xué)成績(jī)x(滿分150分),物理成績(jī)y進(jìn)行分析,下面是該生7次考試的成績(jī)。

數(shù)學(xué)

88

83

117

92

108

100

112

物理

94

91

108

96

104

101

106

已知該生的物理成績(jī)y與數(shù)學(xué)成績(jī)x是線性相關(guān)的,若該生的數(shù)學(xué)成績(jī)達(dá)到130分,請(qǐng)你估計(jì)他的物理成績(jī)大約是多少?

附:對(duì)于一組數(shù)據(jù)其回歸線的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在銳角△ABC中,三個(gè)內(nèi)角AB,C所對(duì)的邊分別為a,b,c,且acsin C=(a2c2b2)·sin B

(1)若C,求A的大;

(2)若ab,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊三角形ABC的邊長(zhǎng)為4,M,N分別為AB,AC的中點(diǎn),沿MN將△AMN折起,使點(diǎn)A到A′的位置.若平面A′MN與平面MNCB垂直,則四棱錐A′MNCB的體積為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示,在直角梯形,,,的中點(diǎn),的交點(diǎn).將沿折起到△的位置如圖2所示.

1證明:平面;

2若平面平面,求平面與平面所成銳二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:以點(diǎn)()為圓心的圓與軸交

于點(diǎn)O, A,與y軸交于點(diǎn)O, B,其中O為原點(diǎn).

(1)求證:△OAB的面積為定值;

(2)設(shè)直線與圓C交于點(diǎn)M, N,若OM = ON,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一個(gè)水輪的半徑為4m,水輪圓心O距離水面2m,已知水輪每分鐘轉(zhuǎn)動(dòng)5圈,如果當(dāng)水輪上點(diǎn)P從水中浮現(xiàn)時(shí)(圖中點(diǎn)p0)開始計(jì)算時(shí)間.

(1)將點(diǎn)p距離水面的高度z(m)表示為時(shí)間t(s)的函數(shù);

(2)點(diǎn)p第一次到達(dá)最高點(diǎn)大約需要多少時(shí)間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求在區(qū)間上的最大值和最小值;

(2)若在區(qū)間上,函數(shù)的圖像恒在直線下方,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案