【題目】下列四個(gè)命題中,真命題的個(gè)數(shù)是 ( 。
①命題:“已知 ,“”是“”的充分不必要條件”;
②命題:“p且q為真”是“p或q為真”的必要不充分條件;
③命題:已知冪函數(shù)的圖象經(jīng)過點(diǎn)(2,),則f(4)的值等于;
④命題:若,則.
A. 1B. 2C. 3D. 4
【答案】C
【解析】
命題①單位圓x2+y2=1上或圓外任取一點(diǎn)P(a,b),滿足“a2+b2≥1”,根據(jù)三角形兩邊之和大于第三邊,一定有“|a|+|b|≥1”,在單位圓內(nèi)任取一點(diǎn)M(a,b),滿足“|a|+|b|≥1”,但不滿足“a2+b2≥1”,從而判斷命題的真假性;
命題②先由“p且q為真”推出p、q的真假,然后判斷“p或q”的真假,反之再加以判斷;
命題③直接把點(diǎn)的坐標(biāo)代入冪函數(shù)求出α,然后把x=4代入求值即可;
命題④構(gòu)造函數(shù)f(x)=x﹣1+lnx,其中x>0,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,從而判斷命題的真假性;
命題①如圖在單位圓x2+y2=1上或圓外任取一點(diǎn)P(a,b),滿足“a2+b2≥1”,根據(jù)三角形兩邊之和大于第三邊,一定有“|a|+|b|≥1”,在單位圓內(nèi)任取一點(diǎn)M(a,b),滿足“|a|+|b|≥1”,但不滿足,“a2+b2≥1”,故a2+b2≥1是“|a|+|b|≥1”的充分不必要條件,故命題①正確;
命題②“p且q為真”,則命題p、q均為真,所以“p或q為真”.反之“p或q為真”,則p、q都為真或p、q一真一假,所以不一定有“p且q為真”.所以命題“p且q為真”是“p或q為真”的充分不必要條件,故命題②不正確;
命題③由冪函數(shù)f(x)=xα的圖象經(jīng)過點(diǎn)(2,),所以2α=,所以α=﹣,所以冪函數(shù)為f(x)= ,所以f(4)=,所以命題③正確;
命題④若x+lnx>1,則x﹣1+lnx>0,設(shè)f(x)=x﹣1+lnx,其中x>0,
∴>0恒成立,∴f(x)在(0,+∞)上單調(diào)遞增,且f(1)=0,
∴f(x)>0時(shí)x>1,即x+lnx>1時(shí)x>1,所以命題④正確.
故選:C
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為 ,過點(diǎn)的直線的參數(shù)方程為(為參數(shù)),與交于兩點(diǎn)
(1) 求的直角坐標(biāo)方程和的普通方程;
(2) 若,,成等比數(shù)列,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,A產(chǎn)品的利潤y與投資x成正比,其關(guān)系如圖甲,B產(chǎn)品的利潤y與投資x的算術(shù)平方根成正比,其關(guān)系如圖乙注:利潤與投資單位為萬元
分別將A,B兩種產(chǎn)品的利潤y表示為投資x的函數(shù)關(guān)系式;
該企業(yè)已籌集到10萬元資金,并全部投入A,B兩種產(chǎn)品的生產(chǎn)問:怎樣分配這10萬元資金,才能使企業(yè)獲得最大利潤,最大利潤是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)已知直線與曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)某農(nóng)產(chǎn)品近五年的產(chǎn)量統(tǒng)計(jì)如下表:
(Ⅰ)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程,并由所建立的回歸方程預(yù)測該地區(qū)2018年該農(nóng)產(chǎn)品的產(chǎn)量;
(Ⅱ)若近五年該農(nóng)產(chǎn)品每千克的價(jià)格(單位:元)與年產(chǎn)量(單位:萬噸)滿足的函數(shù)關(guān)系式為,且每年該農(nóng)產(chǎn)品都能售完.求年銷售額最大時(shí)相應(yīng)的年份代碼的值,
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的計(jì)算公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是上奇函數(shù),對任意實(shí)數(shù)都有,當(dāng)時(shí),,則 ( )
A. -1B. 1C. 0D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求的零點(diǎn);
(2)若有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
(3)若有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌餐飲公司準(zhǔn)備在10個(gè)規(guī)模相當(dāng)?shù)牡貐^(qū)開設(shè)加盟店,為合理安排各地區(qū)加盟店的個(gè)數(shù),先在其中5個(gè)地區(qū)試點(diǎn),得到試點(diǎn)地區(qū)加盟店個(gè)數(shù)分別為1,2,3,4,5時(shí),單店日平均營業(yè)額(萬元)的數(shù)據(jù)如下:
加盟店個(gè)數(shù)(個(gè)) | 1 | 2 | 3 | 4 | 5 |
單店日平均營業(yè)額(萬元) | 10.9 | 10.2 | 9 | 7.8 | 7.1 |
(1)求單店日平均營業(yè)額(萬元)與所在地區(qū)加盟店個(gè)數(shù)(個(gè))的線性回歸方程;
(2)根據(jù)試點(diǎn)調(diào)研結(jié)果,為保證規(guī)模和效益,在其他5個(gè)地區(qū),該公司要求同一地區(qū)所有加盟店的日平均營業(yè)額預(yù)計(jì)值總和不低于35萬元,求一個(gè)地區(qū)開設(shè)加盟店個(gè)數(shù)的所有可能取值;
(3)小趙與小王都準(zhǔn)備加入該公司的加盟店,根據(jù)公司規(guī)定,他們只能分別從其他五個(gè)地區(qū)(加盟店都不少于2個(gè))中隨機(jī)選一個(gè)地區(qū)加入,求他們選取的地區(qū)相同的概率.
(參考數(shù)據(jù)及公式:,,線性回歸方程,其中,.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知正三棱錐,為中點(diǎn),過點(diǎn)作截面交,分別于點(diǎn),,且,分別為,的中點(diǎn).
(1)證明:平面;
(2)若,,求三棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com