14.已知函數(shù)f(x)=$\frac{e(x-1)}{{e}^{x}}$,若存在兩對關(guān)于y軸對稱的點分別再直線y=k(x+1)(k≠0)和函數(shù)y=f(x)的圖象上,則實數(shù)k的取值范圍是(  )
A.(-∞,0)B.(0,+∞)C.(0,1)∪(1,+∞)D.(-∞,-1)∪(-1,0)

分析 設(shè)(x0,y0)在y=k(x+1)上,則(x0,y0)關(guān)于y軸對稱點為(-x0,y0),聯(lián)立方程求出k=-$\frac{e}{{e}^{-{x}_{0}}}$<0或x0=-1,再根據(jù)另一個根不為-1,則k≠-1
問題得以解決.

解答 解:設(shè)(x0,y0)在y=k(x+1)上,
則(x0,y0)關(guān)于y軸對稱點為(-x0,y0),
∴y0=k(x0+1),
y0=$\frac{e(-{x}_{0}-1)}{{e}^{-{x}_{0}}}$,
∴k(x0+1)=$\frac{e(-{x}_{0}-1)}{{e}^{-{x}_{0}}}$=$\frac{-e({x}_{0}+1)}{{e}^{-{x}_{0}}}$
∴k=-$\frac{e}{{e}^{-{x}_{0}}}$<0或x0=-1,
則x0=-1為其中一個根,
又另一個根不為-1,則k≠-1,
故k<0且k≠-1,
故選:D

點評 本題考查了函數(shù)零點的問題以及函數(shù)的對稱性,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知圓C的方程是x2+y2-4x=0,直線l:ax-y-4a+2=0(a∈R)與圓C相交于M、N兩點,設(shè)P(4,2),則|PM|+|PN|的取值范圍是(4,4$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知直線l過點P(1,2)且與圓C:x2+y2=2相交于A,B兩點,△ABC的面積為1,則直線l的方程為x-1=0,3x-4y+5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.用一個平面去截一個幾何體,得到的截面不可能是圓的幾何體是( 。
A.圓錐B.圓柱C.D.三棱錐

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.近日,我遼寧艦航母與3艘編號不同的導(dǎo)彈驅(qū)逐艦艇、2艘編號不同的護衛(wèi)艦艇開展跨海區(qū)訓(xùn)練和編隊試驗任務(wù),若在某次編隊試驗中,要求遼寧艦航母前、后、左、右位置均有艦艇,且同一類艦艇不在相同位置(兩艘艦艇在同一位置視為一種編隊方式),則編隊方式有( 。
A.36種B.72種C.144種D.288種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合A={x∈Z|(x+2)(x-1)<0},B={-2,-1},那么A∪B等于( 。
A.{-2,-1,0,1}B.{-2,-1,0}C.{-2,-1}D.{-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在($\frac{1}{x}$-x26的展開式中,常數(shù)項是15(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.圓心在x軸上且與直線l:y=2x+1切于點P(0,1)的圓C的標準方程為(x-2)2+y2=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.記a=sin1,b=sin2,c=sin3,則( 。
A.c<b<aB.c<a<bC.a<c<bD.a<b<c

查看答案和解析>>

同步練習(xí)冊答案