設(shè)S(n)=
1
n
+
1
n+1
+
1
n+2
+
1
n+3
+…+
1
n2
(n∈N*)
,當(dāng)n=2時(shí),S(2)=( 。
分析:利用最后一項(xiàng)是
1
n2
的形式即可得出.
解答:解:當(dāng)n=2時(shí),S(2)=
1
2
+
1
3
+
1
22
,
故選C.
點(diǎn)評(píng):知道最后一項(xiàng)是
1
n2
的形式是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)S(n)=
1
n
+
1
n+1
+
1
n+2
+
1
n+3
+…+
1
n2
,則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)S(n)=
1
n
+
1
n+1
+
1
n+2
+
1
n+3
+…+
1
n2
,則(  )
A.S(2)=
1
2
+
1
3
B.S(2)=
1
2
+
1
4
C.S(2)=1+
1
2
+
1
3
+
1
4
D.S(2)=
1
2
+
1
3
+
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)S(n)=
1
n
+
1
n+1
+
1
n+2
+
1
n+3
+…+
1
n2
,則(  )
A.S(2)=
1
2
+
1
3
B.S(2)=
1
2
+
1
4
C.S(2)=1+
1
2
+
1
3
+
1
4
D.S(2)=
1
2
+
1
3
+
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)S(n)=
1
n
+
1
n+1
+
1
n+2
+
1
n+3
+…+
1
n2
(n∈N*)
,當(dāng)n=2時(shí),S(2)=(  )
A.
1
2
B.
1
2
+
1
3
C.
1
2
+
1
3
+
1
4
D.
1
2
+
1
3
+
1
4
+
1
5

查看答案和解析>>

同步練習(xí)冊(cè)答案