(08年新建二中模擬)如圖,在幾何體ABCDE中,△ABC是等腰直角三角形,∠ABC = 90°,BE和CD都垂直于平面ABC,且BE = AB = 2,CD = 1,點(diǎn)F是AE的中點(diǎn).
(1)求證:DF∥平面ABC;
(2)求AB與平面BDF所成角的大小.
解析:(1)解:取AB的中點(diǎn)G,連CG,FG,
則FG∥BE,且FG=BE,
∴ FG∥CD且FG=CD, 2分
∴ 四邊形FGCD是平行四邊形,
∴ DF∥CG,
又∵ CG平面ABC,
∴DF∥平面ABC 4分
(2)解:以點(diǎn)B為原點(diǎn),BA、BC、BE所在的直線分別為x、y、z軸,建立空間直角坐標(biāo)系,則
B(0,0,0),A(2,0,0),C(0,2,0),D(0,2,1),E(0,0,2),F(1,0,1)
∴ (0,2,1),(1,-2,0) 6分
設(shè)平面BDF的一個(gè)法向量為n = (2,a,b),
∵ n⊥,n⊥, ∴ 8分
即,解得,
∴n =(2,1,-2) 10分
又設(shè)AB與平面BDF所成的角為,則法線n與所成的角為,
∴ ,
即 ,故AB與平面BDF所成的角為arcsin. 12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年新建二中模擬文) (12分) 已知是定義在R上的函數(shù),其圖象交x軸于A、B、C三點(diǎn).若點(diǎn)B的坐標(biāo)為 (2,0),且f (x) 在[-1,0]和[4,5]上有相同的單調(diào)性,在[0,2]和[4,5]上有相反的單調(diào)性.
(1)求c的值;
(2)在函數(shù)f (x)的圖象上是否存在一點(diǎn)M(x0,y0),使得f (x)在點(diǎn)M的切線斜率為3b?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)求| AC |的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年新建二中模擬文)某種電路開關(guān)閉合后,會(huì)出現(xiàn)紅燈或綠燈閃動(dòng).已知開關(guān)第一次閉合后,出現(xiàn)紅燈和出現(xiàn)綠燈的概率都是,從開關(guān)第二次閉合起,若前次出現(xiàn)紅燈,則下一次出現(xiàn)紅燈的概率是,出現(xiàn)綠燈的概率是,若前次出現(xiàn)綠燈,則下一次出現(xiàn)紅燈的概率是,出現(xiàn)綠燈的概率是.
問(wèn):(1)第二次閉合后,出現(xiàn)紅燈的概率是多少?
(2)三次發(fā)光中,出現(xiàn)一次紅燈,兩次綠燈的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年新建二中模擬理) 已知,奇函數(shù)在上單調(diào)。
(1)求的值及的范圍;
(2)設(shè),且滿足,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年新建二中模擬)(12分) 已知數(shù)列{an}的各項(xiàng)均為正數(shù)且a1 = 6,點(diǎn)在拋物線上;數(shù)列{bn}中,點(diǎn)在過(guò)點(diǎn)(0,1)且方向向量為(1,2)的直線上.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)對(duì)任意正整數(shù)n,不等式≤…成立,求正數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年新建二中模擬理) 設(shè)一汽車在行進(jìn)途中要經(jīng)過(guò)4個(gè)路口,汽車在每個(gè)路口遇到綠燈的概率為,遇到紅燈(禁止通行)的概率為.假定汽車只在遇到紅燈或到達(dá)目的地才停止前進(jìn),表示停車時(shí)已經(jīng)通過(guò)的路口數(shù),求:
(1)的概率的分布列及期望E;
(2)停車時(shí)最多已通過(guò)3個(gè)路口的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com