分析 (1)把已知條件都用首項以及公差d表示出來,求出首項和公差,由等差數列的通項公式解答;
(2)利用(1)的結論易得${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{2}{2n+1}$),即利用裂項可求和;
(3)根據等比數列的定義推知公比q=3,首項c1=1,所以由等比數列的前n項和公式進行解答.
解答 解:設數列的首項以及公差分別為:a1,d.
所以有a3=a1+2d=5 ①,
$\frac{3({a}_{1}+5)}{2}=9$ ②
聯立①②解得:a1=1,d=2,
所以an=1+2(n-1)=2n-1;
(2)由(1)知,an=2n-1.
則${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{2}{2n+1}$),
所以Tn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{2}{2n+1}$)=$\frac{1}{2}$(1-$\frac{2}{2n+1}$)=$\frac{n}{2n+1}$;
(3)∵c2=a2=3,c3=a5=9,
∴q=3,
∴c1=1,
∴Qn=$\frac{1×(1-{3}^{n})}{1-3}$=$\frac{1}{2}$(3n-1).
點評 本題主要考查數列通項公式和前n項和的求解,利用定義法和裂項相消法是解決本題的關鍵.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | max{f(n),f(n+1)}>1 | B. | max{f(n),f(n+1)}<1 | C. | max{f(n),f(n+1)}>$\frac{1}{2}$ | D. | max{f(n),f(n+1)}<$\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com