如圖,點(diǎn)P為斜三棱柱ABC—A1B1C1的側(cè)棱BB1上一點(diǎn),PM⊥B1B交AA1于點(diǎn)M,PN⊥BB1交CC1于點(diǎn)N.

(1)求證:CC1⊥MN;

(2)在任意△DEF中有余弦定理:DE2=DF2+EF2-2DF·EFcos∠DFE.拓展到空間,類比三角形的余弦定理,寫出斜三棱柱的三個(gè)側(cè)面面積與其中兩個(gè)側(cè)面所成的二面角之間的關(guān)系式,并予以證明.

思路解析:考慮到三個(gè)側(cè)面的面積需要作出三個(gè)側(cè)面的高,由已知條件可得△PMN為三棱柱的直截面,選取三棱柱的直截面的三角形作類比對(duì)象.

(1)證明:∵PM⊥BB1,PN⊥BB1,∴BB1⊥平面PMN.

∴BB1⊥MN.又CC1∥BB1,∴CC1⊥MN.

(2)解:在斜三棱柱ABC-A1B1C1中,有

.

其中α為平面CC1B1B與平面CC1A1A所成的二面角.

∵CC1⊥平面PMN,∴上述的二面角的平面角為∠MNP.

在△PMN中,PM2=PN2+MN2-2PN·MN·cos∠MNP

PM2·CC12=PN2·CC12+MN2·CC12-2(PN·CC1)·(MN·CC1)·cos∠MNP,

由于=PN·CC1,=MN·CC1,=MP·BB1

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)P為斜三棱柱ABC-A1B1C1的側(cè)棱BB1上一點(diǎn),PM⊥BB1交AA1于點(diǎn)M,PN⊥BB1交CC1于點(diǎn)N.
(1)求證:CC1⊥MN;
(2)在任意△DEF中有余弦定理:DE2=DF2+EF2-2DF•EFcos∠DFE.拓展到空間,類比三角形的余弦定理,寫出斜三棱柱的三個(gè)側(cè)面面積與其中兩個(gè)側(cè)面所成的二面角之間的關(guān)系式,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)P為斜三棱柱ABC-A1B1C1的側(cè)棱BB1上一點(diǎn),PM⊥BB1交AA1于點(diǎn)M,PN⊥BB1交CC1于點(diǎn)N.

(1)求證:CC1⊥MN;

(2)在任意△DEF中有余弦定理:DE2=DF2+EF2-2DF·EFcos∠DFE.拓展到空間,類比三角形的余弦定理,寫出斜三棱柱的三個(gè)側(cè)面面積與其中兩個(gè)側(cè)面所成的二面角之間的關(guān)系式,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海 題型:解答題

如圖,點(diǎn)P為斜三棱柱ABC-A1B1C1的側(cè)棱BB1上一點(diǎn),PM⊥BB1交AA1于點(diǎn)M,PN⊥BB1交CC1于點(diǎn)N.
(1)求證:CC1⊥MN;
(2)在任意△DEF中有余弦定理:DE2=DF2+EF2-2DF•EFcos∠DFE.拓展到空間,類比三角形的余弦定理,寫出斜三棱柱的三個(gè)側(cè)面面積與其中兩個(gè)側(cè)面所成的二面角之間的關(guān)系式,并予以證明.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山西省朔州市應(yīng)縣四中高一(下)模塊考試數(shù)學(xué)試卷(選修2-2)(理科)(解析版) 題型:解答題

如圖,點(diǎn)P為斜三棱柱ABC-A1B1C1的側(cè)棱BB1上一點(diǎn),PM⊥BB1交AA1于點(diǎn)M,PN⊥BB1交CC1于點(diǎn)N.
(1)求證:CC1⊥MN;
(2)在任意△DEF中有余弦定理:DE2=DF2+EF2-2DF•EFcos∠DFE.拓展到空間,類比三角形的余弦定理,寫出斜三棱柱的三個(gè)側(cè)面面積與其中兩個(gè)側(cè)面所成的二面角之間的關(guān)系式,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006年高考第一輪復(fù)習(xí)數(shù)學(xué):9.3 直線與平面垂直(解析版) 題型:解答題

如圖,點(diǎn)P為斜三棱柱ABC-A1B1C1的側(cè)棱BB1上一點(diǎn),PM⊥BB1交AA1于點(diǎn)M,PN⊥BB1交CC1于點(diǎn)N.
(1)求證:CC1⊥MN;
(2)在任意△DEF中有余弦定理:DE2=DF2+EF2-2DF•EFcos∠DFE.拓展到空間,類比三角形的余弦定理,寫出斜三棱柱的三個(gè)側(cè)面面積與其中兩個(gè)側(cè)面所成的二面角之間的關(guān)系式,并予以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案