如圖,邊長為2的正方形ABCD所在平面為α,PA⊥平面α,PA=2,M、N分別是AD、BC的中點,MQ⊥PD于Q.
(1)求證平面PMN⊥平面PAD;
(2)求PM與平面PCD所成的角的正弦值.
分析:(1)要證明平面PMN⊥平面PAD,我們只要證明一個平面經(jīng)過另一個平面的垂線即可,分析圖中已知直線易得,MN⊥平面PAD滿足要求,故我們可以先MN⊥平面PAD,然后根據(jù)面面垂直的判定定理,即可求解.
(2)要求PM與平面PCD所成角的正弦值,關(guān)鍵是要找到PM在平面PCD上的射影,由MN∥CD,我們根據(jù)(1)的結(jié)論,易得CD⊥平面PAD,進而得到平面PCD⊥平面PAD,則過M做PD的垂線,則垂足Q,即為M點在平面PCD上的射影,PQ即為PM在平面PCD上的射影,解三角形PMQ,即可得到答案.
解答:解:(1)正方體ABCD中,
∵M、N分別是AD、BC的中點,
∴MN⊥AD
又∵PA⊥平面α,MN?α,
∴PA⊥MN,
∴MN⊥平面PAD
又MN?平面PAD,平面PMN⊥平面PAD…(5分)
(2)由上可知:MN⊥平面PAD,則CD⊥平面PAD
∴MQ⊥CD,又因為MQ⊥PD,MQ⊥面PCD
∠MPQ是PM與平面PCD所成的角.…(8分)
PA=2,AD=2,則AM=1,PM=
5

PD=2
2
,MQ=
MD•PA
PD
=
2
2
sin∠MpQ=
MQ
PM
=
10
10
…(12分)
點評:本題以線面垂直為載體,考查面面垂直,考查線面角.求直線和平面所成的角時,應注意的問題是:(1)先判斷直線和平面的位置關(guān)系.(2)當直線和平面斜交時,常用以下步驟:①構(gòu)造--作出或找到斜線與射影所成的角;②設定--論證所作或找到的角為所求的角;③計算--常用解三角形的方法求角;④結(jié)論--點明斜線和平面所成的角的值.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖放置的邊長為1的正三角形PAB沿x軸滾動,設頂點A(x,y)的縱坐標與橫坐標的函數(shù)關(guān)系式是y=f(x),則f(x)在區(qū)間[-2,1]上的解析式是
 
;(說明:“正三角形PAB沿x軸滾動”包括沿x軸正方向和沿x軸負方向滾動.沿x軸正方向滾動指的是先以頂點A為中心順時針旋轉(zhuǎn),當頂點B落在x軸上時,再以頂點B為中心順時針旋轉(zhuǎn),如此繼續(xù);類似地,正三角形PAB也可以沿x軸負方向逆時針滾動)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•洛陽一模)如圖放置的邊長為1的正三角形ABC沿x軸的正方向滾動,設頂點A(x,y)的縱坐標與橫坐標的函數(shù)關(guān)系是y=f(x).則f(x)在兩個相鄰零點間的圖象與x軸圍成的面積是
3
+
3
4
3
+
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,過正方形ABCD的中心O作OP⊥平面ABCD,已知正方形的邊長為2,OP=2,連接AP、BP、CP、DP,M、N分別是AB、BC的中點,以O為原點,射線OM、ON、OP分別為Ox軸、Oy軸、Oz軸的正方向建立空間直角坐標系.若E、F分別為PA、PB的中點,求A、B、C、D、E、F的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖放置的邊長為2的正方形PABC沿x軸滾動.設頂點P(x,y)的縱坐標與橫坐標的函數(shù)關(guān)系是y=f(x),則f(x)的最小正周期為
 
;  y=f(x)在其兩個相鄰零點間的圖象與x軸所圍區(qū)域的面積為
 

(說明:“正方形PABC 沿x軸滾動”包括沿x軸正方向和沿x軸負方向滾動.沿x軸正方向滾動指的是先以頂點A為中心順時針旋轉(zhuǎn),當頂點B落在x軸上時,再以頂點B為中心順時針旋轉(zhuǎn),如此繼續(xù).類似地,正方形PABC可以沿x軸負方向滾動.)

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年廣東省四校聯(lián)考高三(上)期末數(shù)學試卷(解析版) 題型:填空題

如圖放置的邊長為1的正三角形PAB沿x軸滾動,設頂點A(x,y)的縱坐標與橫坐標的函數(shù)關(guān)系式是y=f(x),則f(x)在區(qū)間[-2,1]上的解析式是    ;(說明:“正三角形PAB沿x軸滾動”包括沿x軸正方向和沿x軸負方向滾動.沿x軸正方向滾動指的是先以頂點A為中心順時針旋轉(zhuǎn),當頂點B落在x軸上時,再以頂點B為中心順時針旋轉(zhuǎn),如此繼續(xù);類似地,正三角形PAB也可以沿x軸負方向逆時針滾動)

查看答案和解析>>

同步練習冊答案