一接待中心有A、B、C、D四部熱線電話,已知某一時(shí)刻電話A、B占線的概率均為0.5,電話C、D占線的概率均為0.4,各部電話是否占線相互之間沒有影響假設(shè)該時(shí)刻有ξ部電話占線試求隨機(jī)變量ξ的概率分布.
解:ξ的可能取值為0,1,2,3,4,其中:
P(ξ=0)=0.52×0.62=0.09;    P(ξ=1)=×0.52×0.62+0.52××0.4×0.6=0.3
P(ξ=2)=0.52×0.62+×0.52××0.4×0.6+0.52×0.42=0.37
P(ξ="3)=" 0.52××0.4×0.6+×0.52×0.42=0.2;    P(ξ="4)=" 052×042=004
于是得到隨機(jī)變量ξ的概率分布列為:
ξ
0
1
2
3
4
P
0.09
0.3
0.37
0.2
0.04
 
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一個(gè)口袋里有5個(gè)白球和3個(gè)黑球,任意取出一個(gè),如果是黑球,則這個(gè)黑球不放回而另外放入一個(gè)白球,這樣繼續(xù)下去,直到取出的球是白球?yàn)橹。求直到取到白球所需的抽取次?shù)的概率分布列及E.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某種玫瑰花,進(jìn)貨商當(dāng)天以每支1元從鮮花批發(fā)商店購(gòu)進(jìn),以每支2元售出.若當(dāng)天賣不完,剩余的玫瑰花批發(fā)商店以每支0.5元的價(jià)格回收.根據(jù)市場(chǎng)統(tǒng)計(jì),得到這個(gè)季節(jié)的日銷售量X(單位:支)的頻率分布直方圖(如圖所示),將頻率視為概率.(12分)
 
(1)求頻率分布直方圖中的值;
(2)若進(jìn)貨量為(單位支),當(dāng)n≥X時(shí),求利潤(rùn)Y的表達(dá)式;
(3)若當(dāng)天進(jìn)貨量n=400,求利潤(rùn)Y的分布列和數(shù)學(xué)期望E(Y)(統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分) 一副撲克牌共52張(除去大小王),規(guī)定:
①J、Q、 K、A算1點(diǎn);
②每次抽取一張,抽到被3整除的點(diǎn)數(shù)獎(jiǎng)勵(lì)5元,抽到黑桃A獎(jiǎng)勵(lì)50元;
③如未中獎(jiǎng),則抽獎(jiǎng)人每次付出5元。
現(xiàn)有一人抽獎(jiǎng)2次(每次抽后放回),
(1)求這人不虧錢的概率;
(2)設(shè)這人輸贏的錢數(shù)為,求。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

有甲、乙、丙、丁四名網(wǎng)球運(yùn)動(dòng)員,通過對(duì)過去戰(zhàn)績(jī)的統(tǒng)計(jì),在一場(chǎng)比賽中,甲對(duì)乙、丙、丁取勝的概率分別為0.6,
0.8,0.9.
(1)若甲和乙之間進(jìn)行三場(chǎng)比賽,求甲恰好勝兩場(chǎng)的概率;
(2)若四名運(yùn)動(dòng)員每?jī)扇酥g進(jìn)行一場(chǎng)比賽,求甲恰好勝兩場(chǎng)的概率;
(3)若四名運(yùn)動(dòng)員每?jī)扇酥g進(jìn)行一場(chǎng)比賽,設(shè)甲獲勝場(chǎng)次為,求隨機(jī)變量的概率分布.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

同時(shí)擲個(gè)骰子,其中最大點(diǎn)數(shù)為,則(   )(1,2,3,4,5,6)
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

盒內(nèi)含有大小相同的9個(gè)球,其中2個(gè)紅色球,3個(gè)白色球,4個(gè)黑色球,規(guī)定取出1個(gè)紅色球得1分,取出一個(gè)白球得0分,取出一個(gè)黑球得-1分,現(xiàn)從盒內(nèi)一次性取3個(gè)球.
(1)求取出的三個(gè)球得分之和恰為1分的概率
(2)設(shè)ξ為取出的3個(gè)球中白色球的個(gè)數(shù),求ξ分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)隨機(jī)變量X的分布列是
X
1
2
3
P
1/3
1/2
1/6
求(1)P(X=1)
 (2)P(

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

兩封信隨機(jī)投入三個(gè)空郵箱,則郵箱的信件數(shù)的數(shù)學(xué)期望_____。

查看答案和解析>>

同步練習(xí)冊(cè)答案