已知
a
=(3,2),
b
=(k,1),且
a
b
,則k的值是( 。
A、
2
3
B、-
2
3
C、
3
2
D、-
3
2
考點:平面向量共線(平行)的坐標(biāo)表示
專題:平面向量及應(yīng)用
分析:根據(jù)“兩個向量平行,坐標(biāo)交叉相乘差為0”的原則,我們可以構(gòu)造一個關(guān)于x的方程,解方程即可得到答案.
解答: 解:∵
a
b
,
∴2k-3×1=0,
解得k=
3
2

故選C.
點評:本題主要考查了平面向量共線(平行)的坐標(biāo)表示,以及一元一次方程的求解,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖是某算法的程序框圖,則程序運行后輸出的結(jié)果是(  )
A、8B、9C、10D、11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:?φ∈R,使f(x)=sin(x+φ)為偶函數(shù);命題q:?x∈R,cos2x+4sinx-3<0,則下列命題中為真命題的是( 。
A、p∧q
B、(¬p)∨q
C、p∨(¬q)
D、(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個扇形的弧長與面積都是5,則這個扇形圓心角的弧度數(shù)為( 。
A、2rad
B、
3
2
rad
C、1rad
D、
5
2
rad

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,直線y=
3
3
x+2的傾斜角是( 。
A、
π
6
B、
π
3
C、
6
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
=(sin
π
3
x,
3
),
b
=(1,cos
π
3
x),定義函數(shù)f(x)=
a
b

(Ⅰ)求函數(shù)f(x)的值域;
(Ⅱ)若函數(shù)f(x)圖象上的兩點M、N的橫坐標(biāo)分別為和3,O為坐標(biāo)原點,求△MON的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差列{an}的前n項和為Sn,a1=1,S3=9.
(Ⅰ)求數(shù)列{an}的通項公式:
(Ⅱ)若函數(shù)f(x)=Asin(2x+φ)(A>0,0<φ<π)在x=
π
6
處取得最大值,且最大值為a2,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對應(yīng)邊分別是a,b,c滿足b2+c2=bc+a2
(Ⅰ)求角A的大。
(Ⅱ)已知等差數(shù)列{an}的公差不為零,若a1cosA=1,且a2,a4,a8成等比數(shù)列,求{
4
anan+1
}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

據(jù)民生所望,相關(guān)部門對所屬單位進(jìn)行整治性核查,標(biāo)準(zhǔn)如下表:
查驗類別
所含指標(biāo)項42
每項初查合格率 
2
3
 
1
2
每項復(fù)查合格率 
1
2
 
1
2
每項核查合格權(quán)重分?jǐn)?shù) 2 1
每項核查不合格權(quán)重分?jǐn)?shù) 0 0
規(guī)定初查累計權(quán)重分?jǐn)?shù)為10分或9分的不需要復(fù)查并給予獎勵,10分的獎勵18萬元;9分的獎勵8萬元;初查累計權(quán)重分?jǐn)?shù)為7分及其以下的停下運營并罰款1萬元;初查累計權(quán)重分?jǐn)?shù)為8分的要對不合格指標(biāo)進(jìn)行復(fù)查,最終累計權(quán)重得分等于初查合格部分與復(fù)查部分得分的和,最終累計權(quán)重分?jǐn)?shù)為10分方可繼續(xù)運營,否則停業(yè)運營并罰款1萬元.
(1)求一家單位既沒獲獎勵又沒被罰款的概率;
(2)求一家單位在這次整治性核查中所獲金額X(萬元)的分布列和數(shù)學(xué)期望(獎勵為正數(shù),罰款為負(fù)數(shù)).

查看答案和解析>>

同步練習(xí)冊答案