某工廠對一批產(chǎn)品進(jìn)行了抽樣檢測,如圖是根據(jù)抽樣檢測后的產(chǎn)品凈重(單位:克)數(shù)據(jù)繪制的頻率分散直方圖,其中產(chǎn)品凈重的范圍是[96,106],樣本數(shù)據(jù)分組為[96,98),[98,100),[100,102),[102,104),[104,106).已知樣本中產(chǎn)品凈重小于100克的個數(shù)是36,則樣本中凈重大于或等于98克并且小于102克的產(chǎn)品的個數(shù)是
 
考點:頻率分布直方圖
專題:概率與統(tǒng)計
分析:利用樣本中產(chǎn)品凈重小于100克的個數(shù)是36求得樣本容量,再由頻率分布直方圖求得凈重大于或等于98克并且小于102克的頻率,
根據(jù)頻數(shù)=樣本容量×頻率求凈重大于或等于98克并且小于102克的產(chǎn)品個數(shù).
解答: 解:由頻率分布直方圖知:產(chǎn)品凈重小于100克的頻率為(0.050+0.100)×2=0.3,
又產(chǎn)品凈重小于100克的個數(shù)是36,
∴樣本容量n=
36
0.3
=120;
∵凈重大于或等于98克并且小于102克的頻率為(0.100+0.150)×2=0.5,
∴凈重大于或等于98克并且小于102克的產(chǎn)品的個數(shù)是0.5×120=60.
故答案為:60.
點評:本題考查了由頻率分布直方圖求頻率及頻數(shù),在頻率分布直方圖中頻率=
頻數(shù)
樣本容量
=小矩形的高×組距.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,an∈N*,對于任意n∈N*,an≤an+1,若對于任意正整數(shù)k,在數(shù)列中恰有k個k出現(xiàn),則a2014=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點P(3,4)作拋物線x2=2y的兩條切線,切點分別為A、B,則直線AB的斜率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若p:m2+2m-3≤0;q:函數(shù)f(x)=ex-mx(e為自然對數(shù)的底數(shù))在區(qū)間(0,+∞)上為增函數(shù),則p是q的
 
條件(請?zhí)睿骸俺浞植槐匾匾怀浞�,充分必要,既不充分也不必要”中的一個)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(x+a)6的展開式中x3的系數(shù)為160,則
a
1
xadx的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從分別標(biāo)有數(shù)字1,2,3,4,5,6,7,8,9的9張卡片中任取2張,則兩數(shù)之和是奇數(shù)的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)①f(x)=x2;②f(x)=ex;③f(x)=lnx;④f(x)=cosx.其中對于f(x)定義域內(nèi)的任意一個x1都存在唯一的x2,使f(x1)f(x2)=1成立的函數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P1(a1,b1)與P2(a2,b2)是直線y=kx+1(k為常數(shù))上兩個不同的點,則關(guān)于x和y的方程組
a1x+b1y=1
a2x+b2y=1
的解的情況是( �。�
A、無論k,P1,P2如何,總是無解
B、無論k,P1,P2如何,總有唯一解
C、存在k,P1,P2,使之恰有兩解
D、存在k,P1,P2,使之有無窮多解

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知斜三棱柱的三視圖如圖,該斜三棱柱的體積為( �。�
A、2
B、4
C、
4
3
D、
2
3

查看答案和解析>>

同步練習(xí)冊答案
关 闭