如圖,在三棱柱中,已知,側面。

(1)求直線與底面ABC所成角正切值;

(2)在棱(不包含端點上確定一點的位置,使得(要求說明理由).

(3)在(2)的條件下,若,求二面角的大小.

解:(1)在三棱柱ABC-A1B1C1中,CC1=BB1,

 在ΔBCC1中 ,由余弦定理得 

B1(-1,,0),A(+1,,

0),……………8分

 由(2)可知BE⊥面A1EB ∴是面A1EB的法向量,

 設面A1EB的法向量為

 ,即,得

           ………………12分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在三棱柱中,已知AB⊥側面BB1C1C,AB=BC=1,BB1=2,∠BCC1=
π
3
,E
為CC1上的一點,
(Ⅰ)求證:C1B⊥平面ABC;
(Ⅱ)在線段CC1是否存在一點,使得二面角A-B1E-B大小為
π
4
.若存在請求出E點所在位置,若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱柱中,已知學,,,,,網(wǎng),側面,

(1)求直線C1B與底面ABC所成角正切值;學科網(wǎng)

(2)在棱(不包含端點上確定一點的位置,學科網(wǎng)

使得(要求說明理由).學科網(wǎng)

(3)在(2)的條件下,若,求二面角的大小.學科網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱柱中,已知學,,,,,網(wǎng),側面,

(1)求直線C1B與底面ABC所成角正切值;學科網(wǎng)

(2)在棱(不包含端點上確定一點的位置,學科網(wǎng)

使得(要求說明理由).學科網(wǎng)

(3)在(2)的條件下,若,求二面角的大小.學科網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源:2011年福建省莆田一中高二上學期第一學段考試數(shù)學 題型:解答題

(12分)如圖,在三棱柱中,已知,側面.為棱的中點,

(1)求證: ;(2)若,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江西省高三上學期第一次月考數(shù)學卷 題型:解答題

(本題滿分12分)

如圖,在三棱柱中,已知,側面

(1)求直線C1B與底面ABC所成角的正弦值;

(2)在棱(不包含端點上確定一點的位置,使得(要求說明理由).

(3)在(2)的條件下,若,求二面角的大小.

                      

 

查看答案和解析>>

同步練習冊答案