((本小題滿分14分)如圖,正方體
中,棱長為
(1)求直線
與
所成的角;
(2)求直線
與平面
所成角的正切值;
(3)求證:平面
平面
.
證明:(1)連接
,
所以四邊形
是平行四邊形,
為異面直線
與
所成的角.
異面直線
與
所成的角為600----
---------5分
(2)
為直線
與平面
所成的角,
中
直線
與平面
所成角的正切值為
------10分
(3)
-------------------14分
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如圖6,正方形
所在平面與圓
所在平面相交于
,線段
為圓
的弦,
垂直于圓
所在平面,垂足
是圓
上異于
、
的點,
,圓
的直徑為9.
(1)求證:平面
平面
;
(2)求三棱錐D-ABE的體積.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
ABCD為平行四邊形,P為平面ABCD外一點,PA⊥面ABCD,且PA=AD=2,AB=1,AC=
。
求證:平面ACD⊥平面PAC;
求異面直線PC與BD所成角的余弦值;
設(shè)二面角A—PC—B的大小為
,試求
的值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在三棱錐
中,
,
,側(cè)面
為等邊三角形,側(cè)棱
.
(Ⅰ)求證:
;
(Ⅱ)求證:平面
平面
;
(Ⅲ)求二面角
的余弦值
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知三棱柱
的側(cè)棱垂直于底面,
,
,
,
,
分別是
,
的中點.
(1)證明:
;
(2)證明:
平面
;
(3)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知三棱錐
的四個頂點均在半徑為3的球面上,且
PA、
PB、
PC兩兩互相垂直,則三棱錐
的側(cè)面積的最大值為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,三棱錐
中,
底面
于
,
,點
,點
分別是
的中點.
(1) 求證:側(cè)面
⊥側(cè)面
;
(2) 求點
到平面
的距離;
(3) 求異面直線
與
所成的角的余弦.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖一,平面四邊形
關(guān)于直線
對稱,
.
把
沿
折起(如圖二),使二面角
的余弦值等于
.對于圖二,
(Ⅰ)求
;
(Ⅱ)證明:
平面
;
(Ⅲ)求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如左圖示,在四棱錐A-BHCD中,AH⊥面BHCD,此棱錐的三視圖如下:
(1)求二面角B-AC-D的大小;
(2)在線段AC上是否存在一點E,使ED與面BCD成45°角?若存在,確定E的位置;若不存在,說明理由。
查看答案和解析>>