精英家教網 > 高中數學 > 題目詳情

若定義在R上的偶函數滿足,且當時,,則函數的零點的個數為

A.8                B.6                C.5                D.4

 

【答案】

B

【解析】

試題分析:因為當時,,且函數是偶函數,所以當時, 。又函數滿足,即函數周期為2,所以可畫出的圖像(圖中黑線)。再畫出函數的圖像(圖中紅線)。圖中兩圖像相交6個點,則函數的零點有6個。故選B。

考點:函數的零點

點評:求函數的零點,只要令函數值對于0,然后求出x值。有時求零點要結合圖像求出,因為要求出x 很困難,像本題。

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

若定義在R上的偶函數f(x)和奇函數g(x)滿足f(x)+g(x)=ex,則g(x)=( 。
A、ex-e-x
B、
1
2
(ex+e-x
C、
1
2
(e-x-ex
D、
1
2
(ex-e-x

查看答案和解析>>

科目:高中數學 來源: 題型:

給出以下四個命題:
①若定義在R上的偶函數f(x)在(0,+∞)上單調遞增,則f(x)在(-∞,0)上單調遞減;
②函數y=
kx2-6kx+9
的定義域為R,則k的取值范圍是(0,1];
③要得到y=3sin(3x+
π
4
)
的圖象,只需將y=3sin2x的圖象左移
π
4
個單位;
④若函數 f(x)=x3-ax在[1,+∞)上是單調遞增函數,則a的最大值是3.
所有正確命題的序號為
①④
①④

查看答案和解析>>

科目:高中數學 來源: 題型:

若定義在R上的偶函數f(x)滿足f(x+2)=f(x),且當x∈[0,1]時,f(x)=x,則函數y=f(x)-log5|x|的零點個數有
8
8
個.

查看答案和解析>>

科目:高中數學 來源: 題型:

若定義在R上的偶函數f(x)在(-∞,0]上是增函數,且f(-
1
2
)=2
,那么不等式f(sin(2x-
π
3
))<2
[-
π
2
,
π
2
]
上的解集為(  )
A、[-
π
2
,-
π
3
)∪(-
π
4
,
π
12
)∪(
π
6
,
π
2
]
B、[-
π
2
,-
π
3
)∪(
π
6
,
π
2
]
C、[-
π
2
,-
π
3
)∪(-
π
4
π
2
D、[-
π
2
,-
12
)∪(-
π
4
,
π
12
)∪(
π
4
π
2
]

查看答案和解析>>

科目:高中數學 來源: 題型:

若定義在R上的偶函數f(x)滿足f(x+1)=-f(x),且在區(qū)間[0,1]上單調遞減,則( 。
A、f(2)<f(
1
2
)<f(1)
B、f(1)<f(2)<f(
1
2
)
C、f(
1
2
)<f(2)<f(1)
D、f(1)<f(
1
2
)<f(2)

查看答案和解析>>

同步練習冊答案