橢圓和雙曲線-y2=1的公共焦點(diǎn)為F1、F2,P是兩曲線的一個(gè)交點(diǎn),那么cos∠F1PF2的值是
0
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:江西省臨川十中2011-2012學(xué)年高二下學(xué)期期中考試數(shù)學(xué)理科試題 題型:022
以下四個(gè)關(guān)于圓錐曲線的命題中:
①設(shè)A、B為兩個(gè)定點(diǎn),k為正常數(shù),||+||=k,則動(dòng)點(diǎn)P的軌跡為橢圓;
②雙曲線與橢圓+y2=1有相同的焦點(diǎn);
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率;
④已知點(diǎn)P(x,y)的坐標(biāo)滿足方程|3x+4y-15|=5,則點(diǎn)P的軌跡是一條直線.
其中真命題的序號為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:天驕之路中學(xué)系列 讀想用 高二數(shù)學(xué)(上) 題型:044
雙曲線-y2=1的右焦點(diǎn)為F,右準(zhǔn)線為l,以F、l為對應(yīng)焦點(diǎn)和準(zhǔn)線的橢圓截直線y=kx+3所得的弦恰好被x軸平分,試求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:黑龍江省綏棱縣第一中學(xué)2011-2012學(xué)年高二上學(xué)期期末數(shù)學(xué)文科試題 題型:022
在下面幾個(gè)關(guān)于圓錐曲線命題中
①方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率
②設(shè)A、B為兩個(gè)定點(diǎn),K為非零常數(shù),若|PA|-|PB|=K,則動(dòng)點(diǎn)P的軌跡為雙曲線
③過拋物線焦點(diǎn)F的直線與拋物線相交于A、B兩點(diǎn),若A、B在拋物線的準(zhǔn)線上的射影分別為A1、B1,則∠A1FB1=90°
④雙曲線的漸近線與圓(x-3)2+y2=r2(r>0)相切,則
其中真命題序號為________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
以下四個(gè)關(guān)于圓錐曲線的命題中:①設(shè)A、B為兩個(gè)定點(diǎn),k為非零常數(shù),若| |-| |=k,則動(dòng)點(diǎn)P的軌跡為雙曲線;②過定圓C上一定點(diǎn)A作圓的動(dòng)弦AB,O為坐標(biāo)原點(diǎn),若=(+),則動(dòng)點(diǎn)P的軌跡為橢圓;③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率;④雙曲線-=1與橢圓+y2=1有相同的焦點(diǎn).
其中真命題的序號為 (寫出所有真命題的序號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com