等差數(shù)列{an}中,a5+a9-a7=10,則S13的值為( 。
A、130B、260
C、156D、168
考點(diǎn):等差數(shù)列的前n項(xiàng)和,等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:利用等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式求解.
解答: 解:∵等差數(shù)列{an}中,a5+a9-a7=10,
∴a7=10,
∴S13=
13
2
(a1+a13)
=13a7=13×10=130.
故選:A.
點(diǎn)評(píng):本題考查等差數(shù)列的前13項(xiàng)和的求法,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若a>0,b>0,且函數(shù)f(x)=4x3-ax2-2bx-2在x=1處有極值,則ab的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=ln(2x-1)-5上的點(diǎn)到直線2x-y+3=0的最短距離為( 。
A、
5
B、2
5
C、3
5
D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:?x∈R,9x2-6x+1>0;命題q:?x∈R,sinx+cosx=
3
,則( 。
A、¬p是假命題
B、¬q是假命題
C、p∨q是真命題
D、(¬p)∧(¬q)是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x=2是函數(shù)f(x)=x3-3ax+2的極小值點(diǎn),那么函數(shù)f(x)的極大值為( 。
A、15B、16C、17D、18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:?x∈R,x2+x+1<0,命題q:?x∈(0,
π
2
),x>sinx,則下列命題正確的是( 。
A、p∧q
B、p∨(¬q)
C、(¬p)∧(¬q)
D、q∧(¬p)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求值:(tan10°-
3
)sin40°=( 。
A、-1
B、-
2
C、-
3
D、-
6+
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2(m+1)x2+4mx+2m-1的一個(gè)零點(diǎn)在原點(diǎn),則m的值為( 。
A、0
B、
1
2
C、-
1
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M:(x+1)2+y2=
1
8
,圓N:(x-1)2+y2=
49
8
,動(dòng)圓P與兩圓均相切,圓心P的軌跡為曲線G,直線l1:y=k1x+m1與曲線G交于A、C兩點(diǎn),直線l2:y=k2x+m2與曲線G交于B、D兩點(diǎn).
(1)求曲線G的方程;
(2)若四邊形ABCD為菱形,求菱形ABCD面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案