分析 “f(x)=x2+m,g(x)=($\frac{1}{2}$)x-m,對?x1∈[-1,3],?x2∈[0,2],f(x1)≥g(x2)成立”,等價于f(x)min≥g(x)min.若p∧q為假,p∨q為真,可得p與q必然一真一假.
解答 解:命題p:由“?x∈[0,$\frac{π}{4}$],tanx≤m”恒成立,∴m≥(tanx)max=1.
命題q:?x∈[-1,3],f(x)min=f(0)=m.x∈[0,2],g(x)min=$(\frac{1}{2})^{2}$-m=$\frac{1}{4}$-m.
“f(x)=x2+m,g(x)=($\frac{1}{2}$)x-m,
對?x1∈[-1,3],?x2∈[0,2],f(x1)≥g(x2)成立”,
∴f(x)min≥g(x)min.
∴m≥$\frac{1}{4}$-m,解得$m≥\frac{1}{8}$.
若p∧q為假,p∨q為真,∴p與q必然一真一假,
∴$\left\{\begin{array}{l}{m≥1}\\{m<\frac{1}{8}}\end{array}\right.$,或$\left\{\begin{array}{l}{m<1}\\{m≥\frac{1}{8}}\end{array}\right.$,
解得m∈∅,或$\frac{1}{8}≤m<1$.
∴m的取值范圍是$[\frac{1}{8},1)$.
點評 本題考查了函數(shù)的單調性、不等式的解法、簡易邏輯的判定方法、恒成立問題的等價轉化方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,$\frac{1}{4}$] | B. | (-∞,$\frac{1}{e}$] | C. | (-∞,$\frac{1}{2}$] | D. | (-∞,1] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com