已知直線經(jīng)過橢圓的焦點并且與橢圓相交于,兩點,線段的垂直平分線與軸相交于點,則面積的最大值為         

 

【答案】

【解析】

試題分析:設(shè)橢圓上焦點為F,則S△MPQ=?|FM|?|x1-x2|=,所以△MPQ的面積為(0<m<)

設(shè)f(m)=m(1-m)3,則f'(m)=(1-m)2(1-4m)(0,)

可知f(m)在區(qū)間(0,)單調(diào)遞增,在區(qū)間(,)單調(diào)遞減.

所以,當(0,)時,f(m)=m(1-m)3有最大值f()=

所以,當時,△MPQ的面積有最大值

考點:本試題考查了橢圓的性質(zhì),以及三角形面積知識。

點評:解決該題時要認真審題,注意挖掘題設(shè)中的隱含條件,合理地進行等價轉(zhuǎn)化,屬于中檔題。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,點A、B分別是橢圓C的左頂點和上頂點,直線AB與圓G:x2+y2=
c2
4
(c是橢圓的焦半距)相離,P是直線AB上一動點,過點P作圓G的兩切線,切點分別為M、N.
(1)若橢圓C經(jīng)過兩點(1,
4
2
3
)
、(
3
3
2
,1)
,求橢圓C的方程;
(2)當c為定值時,求證:直線MN經(jīng)過一定點E,并求
OP
OE
的值(O是坐標原點);
(3)若存在點P使得△PMN為正三角形,試求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題15分)

已知橢圓C:,點A、B分別是橢圓C的左頂點和上頂點,直線AB與圓G: 是橢圓的焦半距)相離,P是直線AB上一動點,過點P作圓G的兩切線,切點分別為M、N.

(1)若橢圓C經(jīng)過兩點、,求橢圓C的方程;

(2)當為定值時,求證:直線MN經(jīng)過一定點E,并求的值(O是坐標原點);

(3)若存在點P使得△PMN為正三角形,試求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江蘇省泰州市姜堰市蔣垛中學高三(下)3月綜合測試數(shù)學試卷(解析版) 題型:解答題

已知橢圓C:,點A、B分別是橢圓C的左頂點和上頂點,直線AB與圓G:(c是橢圓的焦半距)相離,P是直線AB上一動點,過點P作圓G的兩切線,切點分別為M、N.
(1)若橢圓C經(jīng)過兩點,求橢圓C的方程;
(2)當c為定值時,求證:直線MN經(jīng)過一定點E,并求的值(O是坐標原點);
(3)若存在點P使得△PMN為正三角形,試求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江蘇省揚州市高考數(shù)學三模試卷(解析版) 題型:解答題

已知橢圓C:,點A、B分別是橢圓C的左頂點和上頂點,直線AB與圓G:(c是橢圓的焦半距)相離,P是直線AB上一動點,過點P作圓G的兩切線,切點分別為M、N.
(1)若橢圓C經(jīng)過兩點、,求橢圓C的方程;
(2)當c為定值時,求證:直線MN經(jīng)過一定點E,并求的值(O是坐標原點);
(3)若存在點P使得△PMN為正三角形,試求橢圓離心率的取值范圍.

查看答案和解析>>

同步練習冊答案