已知點A是拋物線y2=2px(p>0)上一點,F(xiàn)為拋物線的焦點,準(zhǔn)線l與x軸交與點K,已知|AK|=
2
|AF|,三角形AFK的面積等于8.
(Ⅰ)求p的值;
(Ⅱ)過該拋物線的焦點作兩條互相垂直的直線l1,l2,與拋物線相交得兩條弦,兩條弦的中點分別為G,H.求|GH|的最小值.
分析:(Ⅰ)設(shè)A(x0,y0),因為拋物線的焦點F(
p
2
,0),準(zhǔn)線的方程為:x=-
p
2
,K(-
p
2
,0),作AM⊥l于M,則|AM|=x0+
p
2
=|AF|,由此能求出p.
(Ⅱ)由y2=8x,得F(2,0),設(shè)l1的方程為y=k(x-2),l2的方程為y=-
1
k
(x-2).由
y2=8x
y=k(x-2)
 得G(2+
4
k2
,
4
k
),同理可得H(2+4k2,-4k),由此能求出|GH|的最小值.
解答:解:(Ⅰ)設(shè)A(x0,y0),
因為拋物線的焦點F(
p
2
,0),
準(zhǔn)線的方程為:x=-
p
2
,K(-
p
2
,0),
作AM⊥l于M,,
則|AM|=x0+
p
2
=|AF|
又|AK|=
2
|AF|得|AK|=
2
|AM|,
△AKM即為等腰直角三角形,
∴|KM|=|AM|=x0+
p
2
,即A(x0,x0+
p
2
),
而A點在拋物線上,
(x0+
p
2
)
2
=2px0,
∴x0=
p
2
,于是(
p
2
,p).
又∵S△AFK=
1
2
•|KF|•|y0|=
1
2
•p•p=
p2
2
=8,
p=4.
(Ⅱ)由y2=8x,得F(2,0),
顯然直線l1,l2的斜率都存在且都不為0.
設(shè)l1的方程為y=k(x-2),則l2的方程為y=-
1
k
(x-2).
y2=8x
y=k(x-2)
 得G(2+
4
k2
4
k
),
同理可得H(2+4k2,-4k)
則|GH|2=(
4
k2
-4k)
2
+(
4
k2
+4k)
2

=16(k4+
1
k4
+k2+
1
k2
)≥64.(當(dāng)且僅當(dāng)k2=
1
k2
時取等號)
所以|GH|的最小值是8.
點評:本題主要考查橢圓標(biāo)準(zhǔn)方程,簡單幾何性質(zhì),直線與拋物線的位置關(guān)系,拋物線的簡單性質(zhì)等基礎(chǔ)知識.考查運算求解能力,推理論證能力;考查函數(shù)與方程思想,化歸與轉(zhuǎn)化思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

20090327

 
已知點A是拋物線y2=2px(p>0)上一點,F(xiàn)為拋物線的焦點,準(zhǔn)線l與x軸交于點K,已知|AK|=|AF|,三角形AFK的面積等于8.

   (1)求p的值;

   (2)過該拋物線的焦點作兩條互相垂直的直線l1l2,與拋物線相交得兩條弦,兩條弦

的中點分別為G,H.求|GH|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

20090327

 
已知點A是拋物線y2=2px(p>0)上一點,F(xiàn)為拋物線的焦點,準(zhǔn)線l與x軸交于點K,已知|AK|=|AF|,三角形AFK的面積等于8.

   (1)求p的值;

   (2)過該拋物線的焦點作兩條互相垂直的直線l1,l2,與拋物線相交得兩條弦,兩條弦

的中點分別為G,H.求|GH|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分13分)    已知點A是拋物線y2=2px(p>0)上一點,F(xiàn)為拋物線的焦點,準(zhǔn)線l與x軸交于點K,  已知|AK|=|AF|,三角形AFK的面積等于8. (Ⅰ)求p的值;(Ⅱ)過該拋物線的焦點作兩條互相垂直的直線l1,l2,與拋物線相交得兩條弦,兩條弦的中點分別為G,H.求|GH|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省荊州中學(xué)高三(上)10月質(zhì)量檢查數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知點A是拋物線y2=2px(p>0)上一點,F(xiàn)為拋物線的焦點,準(zhǔn)線l與x軸交與點K,已知|AK|=|AF|,三角形AFK的面積等于8.
(Ⅰ)求p的值;
(Ⅱ)過該拋物線的焦點作兩條互相垂直的直線l1,l2,與拋物線相交得兩條弦,兩條弦的中點分別為G,H.求|GH|的最小值.

查看答案和解析>>

同步練習(xí)冊答案