在正方體ABCD-A1B1C1D1中,求證:
(1)平面A1BD∥平面CB1D1;
(2)M、N分別為棱BC和棱CC1的中點(diǎn),求異面直線AC和MN所成的角.
考點(diǎn):平面與平面平行的判定,異面直線及其所成的角
專(zhuān)題:空間位置關(guān)系與距離,空間角
分析:(1)連接 B1C和 D1C,由A1D∥B1C,A1B∥D1C,能證明平面CB1D1∥平面A1BD.
(2)利用正方體的性質(zhì)容易得到AD1∥MN,所以∠CAD1為異面直線所成的角,連接CD1,得到△CAD1為等邊三角形,得到所求.
解答: (1)證明:連接 B1C和 D1C,
∵A1D∥B1C,A1B∥D1C,
A1D∩A1B=A1
A1D?平面A1BD,A1B?平面A1BD,
B1C?平面CB1D1,D1C?平面CB1D1,
∴平面A1BD∥平面CB1D1
(2)解:因?yàn)閹缀误w為正方體,連接AD1,D1C,所以∠CAD1為異面直線所成的角,
又△CAD1為等邊三角形,
所以異面直線AC和MN所成的角60°
點(diǎn)評(píng):本題考查兩平面平行的證明,考查異面直線所成的角的求法,關(guān)鍵是將面面平行轉(zhuǎn)化為線線平行解答,將空間角轉(zhuǎn)化為平面角解答,注意轉(zhuǎn)化能力和空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=2sin2x的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

tan(-
17π
6
)=( 。
A、
3
B、-
3
C、-
3
3
D、
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中,正確的是
 

(1)曲線y=lnx在點(diǎn)(1,0)處的切線方程是y=x-1;
(2)函數(shù)y=
16-2x
的值域是[0,4];
(3)已知
a
=(sinθ,
1+cosθ
),
b
=(1,
1-cosθ
)
,其中θ∈(π,
2
)
,則
a
b

(4)O是△ABC所在平面上一定點(diǎn),動(dòng)點(diǎn)P滿(mǎn)足:
OP
=
OA
+λ(
AB
sinC
+
AC
sinC
)
,λ∈(0,+∞),則直線1過(guò)三角形的內(nèi)心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1,⊙O的直徑AB=4,點(diǎn)C,D為⊙O上任意兩點(diǎn),∠CAB=45°,∠DAB=60°,F(xiàn)為
BC
的中點(diǎn),沿直徑AB折起,使兩個(gè)半圓所在平面互相垂直.
(1)求證:OF∥面ACD;
(2)求二面角A-CD-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}(n∈N*),其前n項(xiàng)和為Sn,給出下列四個(gè)命題:
①若{an}是等差數(shù)列,則三點(diǎn)(10,
S10
10
)
、(100,
S100
100
)
、(110,
S110
110
)
共線;
②若{an}是等差數(shù)列,且a1=-11,a3+a7=-6,則S1、S2、…、Sn這n個(gè)數(shù)中必然存在一個(gè)最大者;
③若{an}是等比數(shù)列,則Sm、S2m-Sm、S3m-S2m(m∈N*)也是等比數(shù)列;
④若Sn+1=a1+qSn(其中常數(shù)a1q≠0),則{an}是等比數(shù)列;
⑤若等比數(shù)列{an}的公比是q(q是常數(shù)),且a1=1,則數(shù)列{an2}的前n項(xiàng)和sn=
1-q2n
1-q2

其中正確命題的序號(hào)是
 
.(將你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b表示直線,α,β表示平面,下列推理正確的是( 。
A、α∩β=a,b?α⇒a∥b
B、α∩β=a,a∥b⇒b∥α且b∥β
C、a∥β,b∥β,a?α,b?α⇒α∥β
D、α∥β,α∩γ=a,β∩γ=b⇒a∥b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是一個(gè)幾何體的三視圖,則該幾何體的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用min{a,b,c}表示a,b,c三個(gè)數(shù)中的最小值,設(shè)f(x)=min{2x,x+1,10-x}(x≥0),則f(x)的最大值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案