10.設(shè)集合P={x|x2-x-6<0},非空集合Q={x|2a≤x≤a+3},若P∪Q=P,求實數(shù)a的取值范圍.

分析 首先,化簡集合P,然后,結(jié)合條件P∪Q=P,求解實數(shù)a的取值范圍.

解答 解:由集合P得:P={x|-2<x<3},
∵P∪Q=P,
∴Q⊆P,
∴$\left\{\begin{array}{l}{2a≤a+3}\\{2a>-2}\\{a+3<3}\end{array}\right.$,
∴-1<a<0,
∴實數(shù)a的取值范圍為(-1,0).

點(diǎn)評 本題重點(diǎn)考查集合之間的關(guān)系,抓住集合的元素之間的關(guān)系是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若實數(shù)a>1,則函數(shù)f(x)=loga(x2-5x+6)的單調(diào)減區(qū)間為( 。
A.($\frac{5}{2}$,+∞)B.(3,+∞)C.(-∞,$\frac{5}{2}$)D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.證明:
(1)$\sqrt{3}-\sqrt{2}$>$\sqrt{5}-\sqrt{4}$
(2)$\sqrt{n+2}-\sqrt{n+1}$<$\sqrt{n+1}-\sqrt{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.計算:$\frac{{\root{3}{a^2}•{{({a^{\frac{1}{6}}})}^4}}}{{\root{3}{a}}}$=(  )
A.aB.a-2C.$\root{3}{a^4}$D.a4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=2+log3x(1≤x≤9),函數(shù)g(x)=f2(x)+f(x2),求函數(shù)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=x2+k$\sqrt{1-{x}^{2}}$.任取實數(shù)a,b,c∈[-1,1],以f(a),f(b),f(c)為三邊長可以構(gòu)成三角形,則實數(shù)k的取值范圍為(4-2$\sqrt{3}$,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=ax3-$\frac{1}{2}$x2+c的圖象過點(diǎn)(0,1),且在點(diǎn)(2,f(2))處的切線方程是6x-3y-7=0.
(1)求函數(shù)f(x)的極大值和極小值;
(2)求函數(shù)f(x)的圖象與直線y=1所圍成的封閉圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{1}{3}$x3-x2+ax+b的圖象在點(diǎn)P(0,f(0))處的切線方程是3x-y-2=0.
(1)求a、b的值;
(2)函數(shù)g(x)=f(x)+(m-3)x在(-2,+∞)上為增函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在△ABC中,已知b2+c2=bc+a2,則角A的大小為60°

查看答案和解析>>

同步練習(xí)冊答案