3.已知直線l:x=2和圓C:x2+y2-2x-2y=0,則圓C上到直線l的距離等于1的點(diǎn)的個(gè)數(shù)為1.

分析 將圓方程化為標(biāo)準(zhǔn)方程,找出圓心坐標(biāo)與半徑,求出圓心到已知直線的距離,即可得出結(jié)論.

解答 解:圓方程變形得:(x-1)2+(y-1)2=2,即圓心(1,1),半徑r=$\sqrt{2}$,
∴圓心到直線x=2的距離d=1<$\sqrt{2}$,r-d<1
∴圓C上到直線l的距離等于1的點(diǎn)的個(gè)數(shù)為2,
故答案為2.

點(diǎn)評(píng) 此題考查了直線與圓的位置關(guān)系,以及點(diǎn)到直線的距離公式,弄清題意是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知x,y∈(0,+∞),且滿足$\frac{1}{x}+\frac{1}{2y}=2$,那么x+4y的最小值為( 。
A.$\frac{3}{2}-\sqrt{2}$B.$3+\frac{{\sqrt{2}}}{2}$C.$\frac{3}{2}+\sqrt{2}$D.$3-\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.對(duì)于函數(shù)y=f(x),若其定義域內(nèi)存在不同實(shí)數(shù)x1,x2,使得xif(xi)=1(i=1,2)成立,則稱函數(shù)f(x)具有性質(zhì)P,若函數(shù)f(x)=$\frac{{e}^{x}}{a}$具有性質(zhì)P,則實(shí)數(shù)a的取值范圍為$(-\frac{1}{e},0)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若x,y滿足約束條件$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y≥-1\end{array}\right.$,則z=2x-y的最大值為( 。
A.5B.3C.-1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知全集U=R,集合A={x|x<1},則∁UA=(  )
A.(-∞,1]B.[1,+∞)C.RD.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)a=log39,b=20.7,c=($\frac{1}{2}$)${\;}^{-\frac{2}{3}}$,則a,b,c的大小關(guān)系為( 。
A.a>b>cB.b>a>cC.a>c>bD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年河北省保定市高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題

已知集合,那么 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年浙江普通高校招生學(xué)業(yè)水平考試數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,設(shè)為圓錐的底面直徑,為母線,點(diǎn)在底面圓周上,若,則二面角大小的正切值是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆江西南昌市新課標(biāo)高三一輪復(fù)習(xí)訓(xùn)練五數(shù)學(xué)試卷(解析版) 題型:填空題

中,角所對(duì)的邊分別為,已知,則 .

查看答案和解析>>

同步練習(xí)冊答案