【題目】已知 .

(1)若上的增函數(shù),求的取值范圍;

(2)若函數(shù)有兩個極值點,判斷函數(shù)零點的個數(shù).

【答案】(1) (2) 三個零點

【解析】

(1) 由題意知恒成立,構(gòu)造函數(shù),對函數(shù)求導(dǎo),求得函數(shù)最值,進(jìn)而得到結(jié)果;(2)當(dāng)時先對函數(shù)求導(dǎo)研究函數(shù)的單調(diào)性可得到函數(shù)有兩個極值點,再證,.

(1)由,

由題意知恒成立,即,設(shè),

遞減,時,,遞增;

,即,故的取值范圍是.

(2)當(dāng)時,單調(diào),無極值;

當(dāng)時,,

一方面,,且遞減,所以在區(qū)間有一個零點.

另一方面,,設(shè) ,則,從而

遞增,則,即,又遞增,所以

在區(qū)間有一個零點.

因此,當(dāng)各有一個零點,將這兩個零點記為,

,當(dāng),即;當(dāng),即

;當(dāng),即:從而遞增,在

遞減,在遞增;于是是函數(shù)的極大值點,是函數(shù)的極小值點.

下面證明:

,即,由

,則

①當(dāng),遞減,則,而,故;

②當(dāng),遞減,則,而,故

一方面,因為,又,且遞增,所以

上有一個零點,即上有一個零點.

另一方面,根據(jù),則有:

,

,且遞增,故上有一個零點,故

上有一個零點.

,故有三個零點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為發(fā)展業(yè)務(wù),某調(diào)研組對,兩個公司的產(chǎn)品需求量進(jìn)行調(diào)研,準(zhǔn)備從國內(nèi)個人口超過萬的超大城市和)個人口低于萬的小城市隨機(jī)抽取若干個進(jìn)行統(tǒng)計,若一次抽取個城市,全是小城市的概率為.

(1)求的值;

(2)若一次抽取個城市,則:①假設(shè)取出小城市的個數(shù)為,求的分布列和期望;

②若取出的個城市是同一類城市,求全為超大城市的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,平面平面,、均為等邊三角形,的中點,點.

1)求證:平面平面;

2)若點是線段的中點,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓與拋物線有一個相同的焦點,且該橢圓的離心率為,

(Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程:

(Ⅱ)求過點的直線與該橢圓交于A,B兩點,O為坐標(biāo)原點,若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,點是橢圓上任意一點,的最小值為,且該橢圓的離心率為.

1)求橢圓的方程;

2)若是橢圓上不同的兩點,且,若,試問直線是否經(jīng)過一個定點?若經(jīng)過定點,求出該定點的坐標(biāo);若不經(jīng)過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(多選)已知函數(shù),其中正確結(jié)論的是( )

A.當(dāng)時,函數(shù)有最大值.

B.對于任意的,函數(shù)一定存在最小值.

C.對于任意的,函數(shù)上的增函數(shù).

D.對于任意的,都有函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)若,,求函數(shù)的極值;

(2)若是函數(shù)的一個極值點,試求出關(guān)于的關(guān)系式(即用表示),并確定的單調(diào)區(qū)間;(提示:應(yīng)注意對的取值范圍進(jìn)行討論)

(3)在(2)的條件下,設(shè),函數(shù),若存在使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐,為矩形,,平面平面

1)證明:平面平面;

2)若中點,直線與平面所成的角為,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,以原點為圓心,橢圓的短半軸為半徑的圓與直線相切.

1)求橢圓的方程;

2)設(shè),是橢圓上關(guān)于軸對稱的任意兩個不同的點,連結(jié)交橢圓于另一點,證明:直線軸相交于定點.

查看答案和解析>>

同步練習(xí)冊答案