A. | d1=2,d2=0,d3=2014 | B. | d1=2,d2=2,d3=2014 | ||
C. | d1=2,d2=1,d3=2013 | D. | d1=2,d2=2,d3=2012 |
分析 先化簡f(x)=[x]•{x}=[x]•(x-[x])=[x]x-[x]2,再化簡f(x)>g(x),再分類討論:①當(dāng)x∈[0,1)時,②當(dāng)x∈[1,2)時③當(dāng)x∈[2,2016]時,從而得出f(x)>g(x)在0≤x≤2016時的解集的長度;對于f(x)=g(x)和f(x)<g(x)進(jìn)行類似的討論即可.
解答 解:f(x)=[x]•{x}=[x]•(x-[x])=[x]x-[x]2,g(x)=x-1
f(x)>g(x)⇒[x]x-[x]2>x-1即([x]-1)x>[x]2-1
當(dāng)x∈[0,1)時,[x]=0,上式可化為x<1,∴x∈[0,1);
當(dāng)x∈[1,2)時,[x]=1,上式可化為0<0,∴x∈∅;
當(dāng)x∈[2,2016]時,[x]-1>0,上式可化為x>[x]+1,∴x∈∅;
∴f(x)>g(x)在0≤x≤2016時的解集為[0,1),故d1=1
f(x)=g(x)⇒[x]x-[x]2=x-1即([x]-1)x=[x]2-1
當(dāng)x∈[0,1)時,[x]=0,上式可化為x=1,∴x∈∅;
當(dāng)x∈[1,2)時,[x]=1,上式可化為0=0,∴x∈[1,2);
當(dāng)x∈[2,2016]時,[x]-1>0,上式可化為x=[x]+1,∴x∈∅;
∴f(x)=g(x)在0≤x≤2016時的解集為[1,2),故d2=1
f(x)<g(x)⇒[x]x-[x]2<x-1即([x]-1)x<[x]2-1
當(dāng)x∈[0,1)時,[x]=0,上式可化為x>1,∴x∈∅;
當(dāng)x∈[1,2)時,[x]=1,上式可化為0>0,∴x∈∅;
當(dāng)x∈[2,2016]時,[x]-1>0,上式可化為x<[x]+1,∴x∈[2,2016];
∴f(x)<g(x)在0≤x≤2016時的解集為[2,2016],故d3=2013
故選C
點評 本題主要考查了抽象函數(shù)及其應(yīng)用,同時考查了創(chuàng)新能力,以及分類討論的思想和轉(zhuǎn)化思想,屬于中檔題.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com