12.定義區(qū)間(a,b)、[a,b)、(a,b]、[a,b]的長度均為d=b-a,多個區(qū)間并集的長度為各區(qū)間長度之和,例如,(1,2)∪[3,5)的長度為d=(2-1)+(5-3)=3,用[x]表示不超過的x最大整數(shù),記{x}=x-[x],其中x∈R.設(shè)f(x)=[x]•{x},g(x)=2x-[x]-2,若用d1,d2,d3分別表示不等式f(x)>g(x)、方程f(x)=g(x)、不等式f(x)<g(x)解集的長度,則當(dāng)0≤x≤2016時,有( 。
A.d1=2,d2=0,d3=2014B.d1=2,d2=2,d3=2014
C.d1=2,d2=1,d3=2013D.d1=2,d2=2,d3=2012

分析 先化簡f(x)=[x]•{x}=[x]•(x-[x])=[x]x-[x]2,再化簡f(x)>g(x),再分類討論:①當(dāng)x∈[0,1)時,②當(dāng)x∈[1,2)時③當(dāng)x∈[2,2016]時,從而得出f(x)>g(x)在0≤x≤2016時的解集的長度;對于f(x)=g(x)和f(x)<g(x)進(jìn)行類似的討論即可.

解答 解:f(x)=[x]•{x}=[x]•(x-[x])=[x]x-[x]2,g(x)=x-1
f(x)>g(x)⇒[x]x-[x]2>x-1即([x]-1)x>[x]2-1
當(dāng)x∈[0,1)時,[x]=0,上式可化為x<1,∴x∈[0,1);
當(dāng)x∈[1,2)時,[x]=1,上式可化為0<0,∴x∈∅;
當(dāng)x∈[2,2016]時,[x]-1>0,上式可化為x>[x]+1,∴x∈∅;
∴f(x)>g(x)在0≤x≤2016時的解集為[0,1),故d1=1
f(x)=g(x)⇒[x]x-[x]2=x-1即([x]-1)x=[x]2-1
當(dāng)x∈[0,1)時,[x]=0,上式可化為x=1,∴x∈∅;
當(dāng)x∈[1,2)時,[x]=1,上式可化為0=0,∴x∈[1,2);
當(dāng)x∈[2,2016]時,[x]-1>0,上式可化為x=[x]+1,∴x∈∅;
∴f(x)=g(x)在0≤x≤2016時的解集為[1,2),故d2=1
f(x)<g(x)⇒[x]x-[x]2<x-1即([x]-1)x<[x]2-1
當(dāng)x∈[0,1)時,[x]=0,上式可化為x>1,∴x∈∅;
當(dāng)x∈[1,2)時,[x]=1,上式可化為0>0,∴x∈∅;
當(dāng)x∈[2,2016]時,[x]-1>0,上式可化為x<[x]+1,∴x∈[2,2016];
∴f(x)<g(x)在0≤x≤2016時的解集為[2,2016],故d3=2013
故選C

點評 本題主要考查了抽象函數(shù)及其應(yīng)用,同時考查了創(chuàng)新能力,以及分類討論的思想和轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

同步練習(xí)冊答案