分析 (1)利用三角形相似,證明∠ACD=∠AEF,即可證明C、D、E、F四點共圓;
(2)證明△AEB≌△AEF,EB=EF,利用△ACD∽△BED,即可證明結論.
解答 證明:(1)∵AC•AF=AD•AE,
∴$\frac{AC}{AD}=\frac{AE}{AF}$,
∵∠CAD=∠EAF,
∴△CAD∽△EAF,
∴∠ACD=∠AEF,
∴C、D、E、F四點共圓;
(2)由(1)可得∠ACD=∠AEF,
∵∠ACD=∠BED,
∴∠AEF=∠BED,
∴∠AEF=∠AEB,
∵AE=AE,∠BAE=∠FAE,
∴△AEB≌△AEF,
∴EB=EF,
∵△ACD∽△BED,
∴$\frac{AC}{BE}=\frac{CD}{ED}$,
∴AC•DE=BE•CD
∴AC•DE=EF•CD.
點評 本題考查三角形相似的判定與性質,考查學生分析解決問題的能力,正確證明三角形相似是關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{22}{13}$ | C. | $\frac{3}{22}$ | D. | $\frac{13}{18}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com