(本小題滿分13分)
已知數(shù)列、、的通項(xiàng)公式滿足,().若數(shù)列
是一個(gè)非零常數(shù)列,則稱數(shù)列是一階等差數(shù)列;若數(shù)列是一個(gè)非零常數(shù)列,則稱數(shù)列是二階等差數(shù)列.
(Ⅰ)試寫出滿足條件,,的二階等差數(shù)列的前五項(xiàng);
(Ⅱ)求滿足條件(Ⅰ)的二階等差數(shù)列的通項(xiàng)公式;
(Ⅲ)若數(shù)列的首項(xiàng),且滿足,求數(shù)列的通項(xiàng)公式.
(本小題滿分13分)
已知數(shù)列、、的通項(xiàng)公式滿足,().若數(shù)列
是一個(gè)非零常數(shù)列,則稱數(shù)列是一階等差數(shù)列;若數(shù)列是一個(gè)非零常數(shù)列,則稱數(shù)列是二階等差數(shù)列.
(Ⅰ)試寫出滿足條件,,的二階等差數(shù)列的前五項(xiàng);
(Ⅱ)求滿足條件(Ⅰ)的二階等差數(shù)列的通項(xiàng)公式;
(Ⅲ)若數(shù)列的首項(xiàng),且滿足,求數(shù)列的通項(xiàng)公式.
解:(Ⅰ)
(Ⅱ)依題意
所以
=1+1+1+1+…+1=n.
又,……
所以
(Ⅲ)由已知可得
即
解法一:整理得:an+1+2n+1=4(an+2n),
因而數(shù)列的首項(xiàng)為,公比為4的等比數(shù)列,
∴an+2n=4·4n-1=4n,
即 。
解法二:在等式兩邊同時(shí)除以2n+1得:
令
故數(shù)列{kn+1}是首項(xiàng)為2,公比為2的等比數(shù)列.
所以kn+1=2·2n-1=2n,即kn=2n-1
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)求函數(shù)的最小正周期和最大值;
(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.
(3)設(shè)0<x<,且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知定義域?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).
(1)求的值;(2)判斷函數(shù)的單調(diào)性;
(3)若對(duì)任意的,不等式恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知集合, ,.
(1)求(∁; (2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,為的中點(diǎn)。
(Ⅰ)求證:∥平面;
(Ⅱ)求異面直線與所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)
已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).
(1) 求函數(shù)的表達(dá)式;
(2)在中,若A=2,,BC=2,求的面積
(3) 求數(shù)列的前項(xiàng)和
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com