【題目】隨機(jī)調(diào)查某社區(qū)80個(gè)人,以研究這一社區(qū)居民在晚上8點(diǎn)至十點(diǎn)時(shí)間段的休閑方式與性別的關(guān)系,得到下面的數(shù)據(jù)表:
(1)將此樣本的頻率估計(jì)為總體的概率,隨機(jī)調(diào)查3名在該社區(qū)的男性,求這3人中至少有1人是以看書為休閑方式的概率;
(2)根據(jù)以上數(shù)據(jù),能否有99%的把握認(rèn)為“在晚上8點(diǎn)至十點(diǎn)時(shí)間段的休閑方式與性別有關(guān)系?”
參考公式:,其中.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
【答案】(1);(2)有的把握認(rèn)為相關(guān).
【解析】
(1)首先補(bǔ)全列聯(lián)表,用頻率估計(jì)概率得到以看書為休閑方式的男性的概率,
記這3人中至少有1人是以看書為休閑方式的為事件,則事件的對立事件為這3人中沒有1人是以看書為休閑方式,根據(jù)相互獨(dú)立事件的概率公式計(jì)算可得;
(2)首先求出卡方,再跟參考數(shù)據(jù)比較即可得出結(jié)論;
解:(1)依題意,補(bǔ)全以上列聯(lián)表
休閑方式 性別 | 看電視 | 看書 | 合計(jì) |
男 | 10 | 50 | 60 |
女 | 10 | 10 | 20 |
合計(jì) | 20 | 60 | 80 |
用頻率估計(jì)概率,可得以看書為休閑方式的男性的概率為
則隨機(jī)調(diào)查3名在該社區(qū)的男性,記這3人中至少有1人是以看書為休閑方式的為事件,
則事件的對立事件為這3人中沒有1人是以看書為休閑方式其概率為,
所以
(2)由(1)中的列聯(lián)表可得,
的概率約為0.01,所以我們有的把握認(rèn)為相關(guān).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個(gè)問題:“三百七十八里關(guān),初行健步不為難,次日腳痛減一半,第四日行二十四,幾朝才得到其關(guān),請公仔細(xì)算相還.”其大意為:“有一個(gè)人要走378里路,第一天健步行走,從第二天起因腳痛每天走的路程為前一天的一半,其中第四天走了24里.”問此人( )天后到達(dá)目的地.
A.4B.5C.6D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】南充高中扎實(shí)推進(jìn)陽光體育運(yùn)動,積極引導(dǎo)學(xué)生走向操場,走進(jìn)大自然,參加體育鍛煉,每天上午第三節(jié)課后全校大課間活動時(shí)長35分鐘.現(xiàn)為了了解學(xué)生的體育鍛煉時(shí)間,采用簡單隨機(jī)抽樣法抽取了100名學(xué)生,對其平均每日參加體育鍛煉的時(shí)間(單位:分鐘)進(jìn)行調(diào)查,按平均每日體育鍛煉時(shí)間分組統(tǒng)計(jì)如下表:
分組 | ||||||
男生人數(shù) | 2 | 16 | 19 | 18 | 5 | 3 |
女生人數(shù) | 3 | 20 | 10 | 2 | 1 | 1 |
若將平均每日參加體育鍛煉的時(shí)間不低于120分鐘的學(xué)生稱為“鍛煉達(dá)人”.
(1)將頻率視為概率,估計(jì)我校7000名學(xué)生中“鍛煉達(dá)人”有多少?
(2)從這100名學(xué)生的“鍛煉達(dá)人”中按性別分層抽取5人參加某項(xiàng)體育活動.
①求男生和女生各抽取了多少人;
②若從這5人中隨機(jī)抽取2人作為組長候選人,求抽取的2人中男生和女生各1人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】湖北省第二屆(荊州)園林博覽會于2019年9月28日至11月28日在荊州園博園舉辦,本屆園林博覽會以“輝煌荊楚,生態(tài)園博”為主題,展示荊州生態(tài)之美,文化之韻,吸引更多優(yōu)秀企業(yè)來荊投資,從而促進(jìn)荊州經(jīng)濟(jì)快速發(fā)展.在此博覽會期間,某公司帶來了一種智能設(shè)備供采購商洽談采購,并決定大量投放荊州市場.已知該種設(shè)備年固定研發(fā)成本為50萬元,每生產(chǎn)一臺需另投入80元,設(shè)該公司一年內(nèi)生產(chǎn)該設(shè)備萬臺,且全部售完,且每萬臺的銷售收入(萬元)與年產(chǎn)量(萬臺)的函數(shù)關(guān)系式近似滿足
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(萬臺)的函數(shù)解析式.(年利潤年銷售收入總成本).
(2)當(dāng)年產(chǎn)量為多少萬臺時(shí),該公司獲得的利潤最大?并求最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其導(dǎo)函數(shù)設(shè)為.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)有兩個(gè)極值點(diǎn),,試用表示;
(Ⅲ)在(Ⅱ)的條件下,若的極值點(diǎn)恰為的零點(diǎn),試求,這兩個(gè)函數(shù)的所有極值之和的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個(gè)說法,其中正確的是( )
A.命題“若,則”的否命題是“若,則”
B.“”是“雙曲線的離心率大于”的充要條件
C.命題“,”的否定是“,”
D.命題“在中,若,則是銳角三角形”的逆否命題是假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若直線與曲線交于、兩點(diǎn),設(shè),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com