【答案】
分析:(1)設出中點M的坐標,由中點坐標公式得到P點坐標,把P的坐標代入圓的方程即可得到M的軌跡;
(2)設出N點坐標,由ON和AC垂直利用斜率之積等于-1得軌跡方程;
(3)①由題意設出圓心坐標,求出曲線y=x
2-6x+1與坐標軸的交點,由兩交點到圓心距離相等求出圓心坐標,則圓的方程可求;
②聯(lián)立圓C與直線x-y+a=0,化為關于x的一元二次方程后利用x
1x
2+y
1y
2=0求解a的值.
解答:解:(1)設中點M坐標為(x,y),由中點坐標公式得動點P的坐標為(2x-4,2y-3),
將P點坐標代入圓得到的關于x、y的方程,就是中點M的軌跡方程(因為點P在圓上).
即(2x-4)
2+(2y-3)
2=4;
(2)設中點N坐標為(x,y),圓心為O,則ON⊥AC,且圓心坐標為(0,0),于是
由
,
因為ON⊥AC,所以k
AC•k
ON=-1,即
,整理得
(x-2)
2+(y-
)
2=
;
(3)①根據(jù)題意,可設圓心為(3,b).
由y=x
2-6x+1,令x=0,則y=1;令y=0,則x=3±
所以,(3-0)
2+(b-1)
2=(±
)
2+b
2,解得b=1,則(±2
)
2+b
2=9
所以,圓C方程為(x-3)
2+(y-1)
2=9
②設坐標:A(x
1,y
1),B(x
2,y
2),A、B同時滿足直線x-y+a=0和圓(x-3)
2+(y-1)
2=9
聯(lián)立方程組把y消去,得2x
2+(2a-8)x+a
2-2a+1=0
由已知有A、B兩個交點,即方程兩個解,則△=56-16a-4a
2>0,
因此有x
1+x
2=4-a,
③
由OA⊥OB可知,x
1x
2+y
1y
2=0,且y
1=x
1+a,y
2=x
2+a,
即
④
把④代入③解得a=-1,將其代入△=56-16a-4a
2進行檢驗,
△=56+16-4=68>0,即符合.所以a=-1.
點評:本題考查了軌跡方程,考查了直線與圓相交的性質,解答的關鍵是靈活運用圓的對稱性,考查了一元二次方程的根與系數(shù)的關系,訓練了“設而不求”的解題思想方法,是中檔題.