已知當(dāng)x∈(0,+∞)時(shí),冪函數(shù)y=(m2-m-1)•x-5m-3為減函數(shù),則實(shí)數(shù)m的值為( 。
分析:當(dāng)x∈(0,+∞)時(shí),冪函數(shù)y=(m2-m-1)•x-5m-3為減函數(shù),利用冪函數(shù)的定義和單調(diào)性可得
m2-m-1=1
-5m-3<0
,解得m即可.
解答:解:∵當(dāng)x∈(0,+∞)時(shí),冪函數(shù)y=(m2-m-1)•x-5m-3為減函數(shù),∴
m2-m-1=1
-5m-3<0
,解得m=2.
故選B.
點(diǎn)評(píng):本題考查了冪函數(shù)的定義和單調(diào)性,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)是R上以2為周期的奇函數(shù),已知當(dāng)x∈(0,1)時(shí),f(x)=log2
1
1-x
,則f(x)在區(qū)間(1,2)上是(  )
A、減函數(shù),且f(x)<0
B、增函數(shù),且f(x)<0
C、減函數(shù),且f(x)>0
D、增函數(shù),且f(x)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x
a
+
a-1
x
(a≠0且a≠1).
(Ⅰ)試就實(shí)數(shù)a的不同取值,寫(xiě)出該函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)已知當(dāng)x>0時(shí),函數(shù)在(0,
6
)
上單調(diào)遞減,在(
6
,+∞)
上單調(diào)遞增,求a的值并寫(xiě)出函數(shù)F(x)=
3
f(x)
的解析式;
(Ⅲ)記(Ⅱ)中的函數(shù)F(x)=
3
f(x)
的圖象為曲線(xiàn)C,試問(wèn)是否存在經(jīng)過(guò)原點(diǎn)的直線(xiàn)l,使得l為曲線(xiàn)C的對(duì)稱(chēng)軸?若存在,求出l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

9、設(shè)f(x)是R上以2為周期的奇函數(shù),已知當(dāng)x∈(0,1)時(shí),f(x)=log2x,那么f(x)在(1,2)上的解析式是
-log2(2-x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實(shí)數(shù)a的不同取值,寫(xiě)出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當(dāng)x>0時(shí),函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫(xiě)出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線(xiàn)C,試問(wèn)是否存在經(jīng)過(guò)原點(diǎn)的直線(xiàn)l,使得l為曲線(xiàn)C的對(duì)稱(chēng)軸?若存在,求出直線(xiàn)l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
(a≠0且a≠1).
(1)試就實(shí)數(shù)a的不同取值,寫(xiě)出該函數(shù)的單調(diào)遞增區(qū)間;
(2)已知當(dāng)x>0時(shí),函數(shù)在(0,
6
)
上單調(diào)遞減,在(
6
,+∞)
上單調(diào)遞增,求a的值并寫(xiě)出函數(shù)的解析式;
(3)(理)記(2)中的函數(shù)的圖象為曲線(xiàn)C,試問(wèn)是否存在經(jīng)過(guò)原點(diǎn)的直線(xiàn)l,使得l為曲線(xiàn)C的對(duì)稱(chēng)軸?若存在,求出l的方程;若不存在,請(qǐng)說(shuō)明理由.
(文) 記(2)中的函數(shù)的圖象為曲線(xiàn)C,試問(wèn)曲線(xiàn)C是否為中心對(duì)稱(chēng)圖形?若是,請(qǐng)求出對(duì)稱(chēng)中心的坐標(biāo)并加以證明;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案