已知數(shù)學(xué)公式,數(shù)學(xué)公式
(1)求sinx-cosx的值;
(2)求tan2x的值.

解:(1)

,∴
(2)
分析:(1)通過(guò)方程平方,求出sinxcosx,然后求sinx-cosx的平方,結(jié)合角的范圍求解即可;
(2)利用二倍角公式化簡(jiǎn)tan2x,結(jié)合(1)的解答,求出所求tan2x的值.
點(diǎn)評(píng):本題是中檔題,考查三角函數(shù)的化簡(jiǎn)求值,注意角的范圍,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知曲線C:y=
1
x
,Cn:y=
1
x+2-n
(n∈N*)
.從C上的點(diǎn)Qn(xn,yn)作x軸的垂線,交Cn于點(diǎn)Pn,再?gòu)腜n作y軸的垂線,交C于點(diǎn)Qn+1(xn+1,yn+1).設(shè)x1=1,an=xn+1-xn,bn=yn-yn+1
(I)求a1,a2,a3的值;
(II)求數(shù)列{an}的通項(xiàng)公式;
(III)設(shè)△PiQiQi+1(i∈N*)和面積為Si,記f(n)=
n
i=1
Si
,求證f(n)<
1
6
.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)q≠0,數(shù)列{an}的前n項(xiàng)和Sn,a1≠0,對(duì)于任意正整數(shù)m,n且m>n,Sn-Sm=qmSn-m恒成立.
(1)證明數(shù)列{an}是等比數(shù)列;
(2)若正整數(shù)i,j,k成公差為3的等差數(shù)列,Si,Sj,Sk按一定順序排列成等差數(shù)列,求q的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省揚(yáng)州市寶應(yīng)縣曹甸高級(jí)中學(xué)高三(上)第二次效益檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題

已知實(shí)數(shù)q≠0,數(shù)列{an}的前n項(xiàng)和Sn,a1≠0,對(duì)于任意正整數(shù)m,n且m>n,恒成立.
(1)證明數(shù)列{an}是等比數(shù)列;
(2)若正整數(shù)i,j,k成公差為3的等差數(shù)列,Si,Sj,Sk按一定順序排列成等差數(shù)列,求q的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省揚(yáng)州市高郵市界首中學(xué)高三(上)周考數(shù)學(xué)試卷(3)(解析版) 題型:解答題

已知實(shí)數(shù)q≠0,數(shù)列{an}的前n項(xiàng)和Sn,a1≠0,對(duì)于任意正整數(shù)m,n且m>n,恒成立.
(1)證明數(shù)列{an}是等比數(shù)列;
(2)若正整數(shù)i,j,k成公差為3的等差數(shù)列,Si,Sj,Sk按一定順序排列成等差數(shù)列,求q的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省揚(yáng)州市高郵市界首中學(xué)高三(上)周考數(shù)學(xué)試卷(3)(解析版) 題型:解答題

已知實(shí)數(shù)q≠0,數(shù)列{an}的前n項(xiàng)和Sn,a1≠0,對(duì)于任意正整數(shù)m,n且m>n,恒成立.
(1)證明數(shù)列{an}是等比數(shù)列;
(2)若正整數(shù)i,j,k成公差為3的等差數(shù)列,Si,Sj,Sk按一定順序排列成等差數(shù)列,求q的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案