已知a,b均為單位向量,則“”是“a+b=()”的

[  ]

A.

充分不必要條件

B.

必要不充分條件

C.

充要條件

D.

既不充分也不必要條件

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí) 題型:

對(duì)兩條不相交的空間直線(xiàn)a與b,必存在平面α,使得

[  ]

A.

aα,bα

B.

aα,b∥α

C.

a⊥α,b⊥α

D.

aα,b⊥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí) 題型:

一個(gè)三棱錐和直三棱柱的組合體的直觀圖以及它的側(cè)(左)視圖、俯視圖如圖所示,則該幾何體的正(主)視圖為

[  ]

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí) 題型:

定義:已知函數(shù)f(x)與g(x),若存在一條直線(xiàn)y=kx+b,使得對(duì)公共定義域內(nèi)的任意實(shí)數(shù)均滿(mǎn)足g(x)≤f(x)≤kx+b恒成立,其中等號(hào)在公共點(diǎn)處成立,則稱(chēng)直線(xiàn)y=kx+b為曲線(xiàn)f(x)與g(x)的“左同旁切線(xiàn)”.已知

(Ⅰ)證明:直線(xiàn)y=x-l是f(x)與g(x)的“左同旁切線(xiàn)”;

(Ⅱ)設(shè)P(x1,f(x1)),Q(x2,f(x2))是函數(shù)f(x)圖象上任意兩點(diǎn),且0<x1<x2,若存在實(shí)數(shù)x3>0,使得.請(qǐng)結(jié)合(I)中的結(jié)論證明:x1<x3<x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí) 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S3=6,則5a1+a7,的值為

[  ]

A.

12

B.

10

C.

24

D.

6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí) 題型:

已知等比數(shù)列{an}的首項(xiàng)及公比均為正數(shù),令,若bk是數(shù)列{bn}的最小項(xiàng),則k=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí) 題型:

定義:已知函數(shù)f(x)與g(x),若存在一條直線(xiàn)y=kx+b,使得對(duì)公共定義域內(nèi)的任意實(shí)數(shù)均滿(mǎn)足g(x)≤f(x)≤kx+b恒成立,其中等號(hào)在公共點(diǎn)處成立,則稱(chēng)直線(xiàn)y=kx+b為曲線(xiàn)f(x)與g(x)的“左同旁切線(xiàn)”.已知

(Ⅰ)證明:直線(xiàn)y=x-l是f(x)與g(x)的“左同旁切線(xiàn)”;

(Ⅱ)設(shè)P(x1,f(x1),Q(x2,f(x2))是函數(shù)f(x)圖象上任意兩點(diǎn),且0<x1<x2,若存在實(shí)數(shù)x3>0,使得.請(qǐng)結(jié)合(Ⅰ)中的結(jié)論證明:x1<x3<x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí) 題型:

已知函數(shù)f(x)滿(mǎn)足f(1)=1且f(x+1)=2f(x),則f(1)+f(2)+…+f(10)=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí) 題型:

若實(shí)數(shù)x,y滿(mǎn)足條件則|x-3y|的最大值為

[  ]

A.

6

B.

5

C.

4

D.

3

查看答案和解析>>

同步練習(xí)冊(cè)答案